CRANY

Cray Fortran Reference Manual

S-3901-71

© 1995, 1997-2009 Cray Inc. All Rights Reserved. This document or parts thereof may not be reproduced in any form unless permitted by
contract or by written permission of Cray Inc.

The CF90 compiler includes United States software patents 5,257,696, 5,257,372, and 5,361,354.

U.S. GOVERNMENT RESTRICTED RIGHTS NOTICE
The Computer Software is delivered as "Commercial Computer Software" as defined in DFARS 48 CFR 252.227-7014.

All Computer Software and Computer Software Documentation acquired by or for the U.S. Government is provided with Restricted Rights.
Use, duplication or disclosure by the U.S. Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR
252.227-7014, as applicable.

Technical Data acquired by or for the U.S. Government, if any, is provided with Limited Rights. Use, duplication or disclosure by the U.S.
Government is subject to the restrictions described in FAR 48 CFR 52.227-14 or DFARS 48 CFR 252.227-7013, as applicable.

Cray, LibSci, and UNICOS are federally registered trademarks and Active Manager, Cray Apprentice2, Cray Apprentice2 Desktop,

Cray C++ Compiling System, Cray CX1, Cray Fortran Compiler, Cray Linux Environment, Cray SeaStar, Cray SeaStar2, Cray SeaStar2+,
Cray SHMEM, Cray Threadstorm, Cray X1, Cray X1E, Cray X2, Cray XD1, Cray XMT, Cray XR1, Cray XT, Cray XT3, Cray XT4, Cray XT5,
Cray XT5h, Cray XT5m, CrayDoc, CrayPort, CRInform, ECOphlex, Libsci, NodeKARE, RapidArray, UNICOS/Ic, UNICOS/mk, and
UNICOS/mp are trademarks of Cray Inc.

AMD and AMD Opteron and Opteron are trademarks of Advanced Micro Devices, Inc. TotalView is atrademark of TotalView Technology, LLC.
I1SO is atrademark of International Organization for Standardization (Organisation Internationale de Normalisation). SUSE is atrademark of
Novell, Inc. Linux is atrademark of Linus Torvalds. PGI isatrademark of The Portland Group Compiler Technology, STMicroelectronics, Inc.
GNU is atrademark of The Free Software Foundation. Sun is atrademark of Sun Microsystems, Inc. in the United States and other countries.
IBM isatrademark of International Business Machines Corporation. UNIX, the “X device,” X Window System, and X/Open are trademarks of
The Open Group in the United States and other countries. All other trademarks are the property of their respective owners.

The UNICOS, UNICOS/mk, and UNICOS/mp operating systems are derived from UNIX System V. These operating systems are also based in
part on the Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

Version 5.6 Published March 2007 Supports the Cray Fortran compiler 5.6 release running on Cray X1 series systems.

Version 6.0 Published September 2007 Supports the Cray Fortran compiler 6.0 release running on Cray X1 series and Cray X2 systems.
Version 7.0 Published December 2008 Supports the Cray Compiling Environment 7.0 release running on Cray XT systems.

Version 7.1 Published June 2009 Supports the Cray Compiling Environment 7.1 release running on Cray XT systems.

New Features

Cray Fortran Reference Manual S-3901-71

New - h [no] aut ot hr ead option enables or disables automatic threading optimization when
compiling. See- h [no] aut ot hr ead on page 34.

New - h func_trace option improves support of CrayPat performance analysis. See - h
func_trace on page 36.

New - h page_al i gn_al | ocat e option causes allocation of arraysto be aligned on a memory page
boundary. See- h page_al i gn_al | ocat e on page 37.

New - h t hreadnand- O t hr eadn options control the level of OpenMP and autothreading
optimization when compiling. See- h t hr eadnon page38and - O t hr eadn on page 56.

The-h snpnand- O snpn options are superseded by - h t hr eadn and have been removed from
this manual.

New LOOP_I NFO PREFER_THREAD and PREFER _NOTHREAD directives indicate preferences
for turning threading on or off for selected loops. See Autothreading for Loops: LOOP_I NFO
PREFER [NO| THREAD on page 99.

New AUTOTHREAD and NOAUT OTHREAD directives control automatic threading for selected blocks of
code. See Control Autothreading: [NO| AUTOTHREAD on page 116.

The Cray Fortran Compiler now fully supports Fortran submodules. See Submodules on page 173.

The maximum alowed cache layer buffer sizeis now 2,147,483,647 bytes. See The cache Layer on
page 250.

Contents

Introduction [1]
1.1 The Cray Fortran Programming Environment
1.2 Cray Fortran Compiler Messages
1.3 Document-specific Conventions
1.4 Fortran Standard Compatibility
1.4.1 Fortran 95 Compatibility
1.4.2 Fortran 90 Compatibility
1.5 Related Fortran Publications

Invoking the Cray Fortran Compiler [2]

2.1- A module_name[, module_name] ...

2.2-b bin_obj_file

23-cC e

24-d disableand- e enable

25- D identifier [=value]

2.6-f source form

27-F

28-g .

2.9- G debug_Iv

210-h arg .o
2.10.1-h [no] aut ot hread
2.10.2- h cachen
2.10.3- h [no] caf
2.10.4-h cpu=target_system
2.105-h di spl ay_opt
2.10.6- h [no] dwar f
210.7-h func_trace
2.10.8-h keepfiles
2109-h [no] negs
2.10.10- h [no] negnsgs

S-3901-71

Page

19
19
20
21
21
21
22
22

23
24
24
25
25
32
32
32
33
33
34

LS N

35
35
36
36
36
36

Cray Fortran Reference Manual

2.10.11-h
2.10.12- h
2.10.13-h
2.10.14-h
2.10.15-h
2.10.16- h
2.10.17-h

net wor k=nic

[no] omp

[no] onmp_trace
page_al i gn_al | ocate
profil e_generate

[no] second_under score
t hr eadn

211-1 incldir
212-J dir_name
2.13-1 libname

214-L Idir

2.15-m msg_|vi

2.16 - M msgs

2.17- N col

2.18-0 opt[, opt] ..
2181-0n .o
2.18.2- O [no] aggr ess
2.18.3- O cachen
2.184-0 fpn
2.185- O fusi onn
2186-0Oinlinelib

2.18.7- O i panand- O i paf r omesource| : source] ...

2.18.7.1 Automatic Inlining

2.18.7.2 Explicit Inlining

2.18.7.3 Combined Inlining
2.18.8- O [no] nodi nl i ne
2.18.9- O [no] negsS
2.18.10- O [no] negnsgs
2.18.11- O noi nt er change
2.18.12- O [no] onp
2.18.13- O [no] overi ndex
2.1814-0O [no] pattern
2.18.15- O scal arn
2.18.16- O shortcircuitn
2.18.17- O t hreadn
21818-0O unrol I n
2.18.19- O vectorn

Page

37
37
37
37
37
38
38
38
39
39
39
39
40
41

SRR B & A

46
47
48
49
50
51
51
52
52
52
52

g g

57
57

S-3901-71

Contents

2.18.20- O [no] zer 0i nc
2.19- 0 out file e
2.20- p module_site] , module_site]
2.21- Q path
222-r list_opt
2.23- R runchk
224-s gize

2.24.1 Different Default Data Size Options on the Command Line

2.24.2 Pointer Scaling Factor
2.25-S asm file
226-T e
2.27- U identifier [, identifier] ...
228-v
229-V .o
2.30 - \&" assembler_opt"
2.31- W " lister_opt"
2.32-x dirlist
2.33- X npes
2.34 - Yphase, dirname
2.35- -
2.36 sourcefile] sourcefile. suffix . . .]

Setting Environment Variables [3]
3.1 Compiler and Library Environment Variables
3.1L.1CRAY_FTN_OPTI ONS Environment Variable
3.1.2 CRAY_PE_TARGET Environment Variable
3.1L.3FORVAT_TYPE_CHECKI NG Environment Variable
3.1.4 FORTRAN_MODULE_PATH Environment Variable
3.15L1 STI O_PRECI SI ON Environment Variable
3.1.6 NLSPATH Environment Variable
3.1.7 NPROC Environment Variable
3.1.8 TMPDI R Environment Variable .o
3.1.9ZERO W DTH_PRECI SI ON Environment Variable
3.2 OpenMP Environment Variables
3.3 Run Time Environment Variables
3.3.1apr un Resource Limits

S-3901-71

Page

58
58
58
61
62
64
67
68
69
70
70
70
71
71
71
71
71
72
73
73
74

75
75
76
76
76
77
77
77
78
78
78
78
79
79

Cray Fortran Reference Manual

Using Cray Fortran Directives[4]
4.1 Using Directives
4.1.1 Directive Lines
4.1.2 Range and Placement of Directives
4.1.3 Interaction of Directives with the - X Command Line Option
4.1.4 Command Line Options and Directives
4.2 Vectorization Directives .
4.2.1 Copy Arrays to Temporary Storage: COPY_ASSUVED _SHAPE
4.2.2 Limit Optimizations: HAND _TUNED
4.2.3 Ignore Vector Dependencies: | VDEP
4.2.4 Specify Scalar Processing: NEXTSCALAR
4.2.5 Request Pattern Matching: [NO| PATTERN .
4.2.6 Declare an Array with No Repeated Values: PERMUTATI ON
4.2.7 Designate Loop Nest for Vectorization: PREFERVECTOR
4.2.8 Conditional Density: PROBABI LI TY Ce e
4.2.9 Allow Speculative Execution of Memory References within Loops: SAFE_ADDRESS

4.2.10 Allow Speculative Execution of Memory References and Arithmetic Operations:
SAFE_CONDI TI ONAL

4.2.11 Designate Loops with Low Trip Counts: SHORTLOOP, SHORTLOOP128
4.2.12 Provide More Information for Loops: LOOP_I NFO
4.2.13 Autothreading for Loops: LOOP_| NFO PREFER_[NO| THREAD
4.2.14 Unroll Loops: [NO UNROLL
4.2.15 Enable and Disable Vectorization: [NO| VECTOR .o
4.2.16 Enable or Disable, Temporarily, Soft Vector-pipelining: [NO| Pl PELI NE
4.3 Inlining Directives .
4.3.1 Disable or Enable Cloning for a Block of Code: [NO] CLONE and RESETCLONE
4.3.2 Disable or Enable Inlining for a Block of Code: [NO| | NLI NE and RESETI NLI NE
4.3.3 Specify Inlining for a Procedure: | NLI NEALWAYS and | NLI NENEVER
4.3.4 Create Inlinable Templates for Module Procedures: [NO] MODI NLI NE
4.4 Scalar Optimization Directives .
4.4.1 Control Loop Interchange: [NOJ | NTERCHANGE
4.4.2 Control Loop Collapse: [NO| COLLAPSE
4.4.3 Determine Register Storage: NOSI DEEFFECTS
4.4.4 Suppress Scalar Optimization: SUPPRESS
4.5 Local Use of Compiler Features
4.5.1 Check Array Bounds: [NO| BOUNDS
4.5.2 Specify Source Form: FREE and FI XED
4.6 Storage Directives

Page

81
85
85
86
87
88
89
90
91
91
92
92
93
94
94
95

96

97

97

99

99
102
102
103
103
104
104
105
106
106
108
109
110
111
111
113
113

S-3901-71

Contents

Page

4.6.1 Permit Cache Blocking: BLOCKABLE Directive . . . Ce e e 113
4.6.2 Declare Cache Blocking: BLOCKI NGSI ZE and NOBLOCKI NGDirectives 114
4.6.3 Request Stack Storage: STACK C e 115
4.7 Miscellaneous Directives . . Ce e 116
4.7.1 Control Autothreading: [NO] AUTOTHREAD Ce e 116
4.7.2 Allocate Cache: CACHE e Ce e 117
4.7.3 Non-temporal Reads and Writes: CACHE_NT C e 117
4.7.4 Specify Array Dependencies: CONCURRENT C e 118
4.7.5 Fuse Loops: [N FUSI ON C e e 118
4.7.6 Create |dentification String: | D Coe . e 119
4.7.7 Disregard Dummy Argument Type, Kind, and Rank: | GNORE_TKR Ce e e 120
4.7.8 External Name Mapping: NAVE C e 121
4,79 Preprocess Include Filee PREPROCESS 122
4.7.10 Specify Weak Procedure Referencese WEAK L. 122
Sour ce Preprocessing [5] 125
5lGeneral Rules Lo 0L 125
5.2Directives e 126
5.2.1#i ncl ude Directive 126
5.2.2#def i ne Directive C s 127
5.23#undef Directive Lo 128
5.2.4 # (Null) Directive C e s e e 129
5.2.5 Conditional Directives e e e 129
525.1#i f Directive L L 130
5252 #i f def Directive L 130
5.25.3#i f ndef Directive e e e 131
5.254#elif Directive L Lo 131
5.255#el se Directive L Lo Lo 131
5256#endi f Directive L. L 131

5.3 Predefined Macros C e s e e 132
5.4 Command Line Options C e e e 133
Using the OpenM P Fortran API [6] 135
6.1 Limitations e e e e 135
6.2 Differences e e e e 136
6.30ptimizations L. 138
6.4 Compiler Options L .o 139
6.5 apr un Options Ce e s e e e 140

S-3901-71 9

Cray Fortran Reference Manual

Cray Fortran Defined Externals[7]
7.1 Conformance Checks

Cray Fortran Language Extensions [8]
8.1 Characters, Lexical Tokens, and Source Form
8.1.1 Characters Allowed in Names
8.1.2 Switching Source Forms
8.1.3 Continuation Line Limit
8.1.4 D Linesin Fixed Source Form
8.2 Types
8.2.1 Alternate Form of LOG CAL Constants
8.2.2 Cray Pointer Type
8.2.3 Cray Character Pointer Type
8.2.4 Boolean Type e
8.2.5 Alternate Form of ENUM Statement
8.2.6 TYPEALI AS Statement
8.3 Data Object Declarations and Specifications
8.3.1 Attribute Specification Statements
8.3.1.1 BOZ Constantsin DATA Statements
8.3.1.2 Attribute Respecification
8.3.1.3 AUTOVATI C Attribute and Statement
8.3.2IMPLICIT Statement
8.3.2.11 MPLI ClI T Extensions
8.3.3 Storage Association of Data Objects
8.3.3.1 EQUI VALENCE Statement Extensions
8.3.3.2 COVIMON Statement Extensions
8.4 Expressions and Assignment
8.4.1 Expressions
8.4.1.1 Rules for Forming Expressions
8.4.1.2 Intrinsic and Defined Operations
8.4.1.3 Intrinsic Operations
8.4.1.4 Bitwise Logical Expressions
8.4.2 Assignment
8.5 Execution Control
8.5.1 STOP Code Extension
8.6 Input/Output Statements
8.6.1 File Connection
8.6.1.1 OPEN Statement

10

Page

141
141

143
143
143
143
144
144
144
144
144
149
149
149
150
150
151
151
151
152
153
153
153
153
153
154
154
154
154
155
156
157
158
158
158
159
159

S-3901-71

Contents

8.7 Error, End-of-record, and End-of-file Conditions
8.7.1 End-of-file Condition and the END-specifier
8.7.1.1 Multiple End-of-file Records
8.8 Input/Output Editing
8.8.1 Data Edit Descriptors
8.8.1.1 Integer Editing
8.8.1.2 Real Editing
8.8.1.3 Logical Editing
8.8.1.4 Character Editing
8.8.2 Control Edit Descriptors
8.8.2.1 Q Editing
8.8.3 List-directed Formatting
8.8.3.1 List-directed Input
8.8.4 Namelist Formatting
8.8.4.1 Namelist Extensions
8.8.5 /0 Editing
8.9 Program Units
8.9.1 Main Program
8.9.1.1 Program Statement Extension
8.9.2 Block Data Program Units
8.9.2.1 Block Data Program Unit Extension
8.10 Procedures
8.10.1 Procedure Interface
8.10.1.1 Interface Duplication
8.10.2 Procedure Definition
8.10.2.1 Recursive Function Extension
8.10.2.2 Empty CONTAI NS Sections
8.11 Intrinsic Procedures and Modules
8.11.1 Standard Generic Intrinsic Procedures
8.11.1.1 Intrinsic Procedures
8.12 Exceptions and |EEE Arithmetic
8.12.1 The Exceptions
8.12.1.1 |EEE Intrinsic Module Extensions
8.13 Interoperability with C
8.13.1 Interoperability Between Fortran and C Entities
8.13.1.1 Bl ND(C) Syntax
8.14 Coarrays

S-3901-71

Page

159
159
159
159
159
159
160
160
160
161
161
161
161
162
162
162
165
165
165
165
165
165
165
165
165
165
165
166
166
166
169
169
169
169
169
169
170

11

Cray Fortran Reference Manual

8.15 Compiling and Executing Programs Containing Coarrays
8.15.1f t n and apr un Options Affecting Coarrays
8.15.2 Using the CrayTools Tool Set with Coarray Programs

8.15.2.1 Debugging Programs Containing Coarrays (Deferred implementation)

8.15.2.2 Analyzing Coarray Program Performance
8.15.3 Interoperating with Other Message Passing and Data Passing Models
8.15.4 Optimizing Programs with Coarrays
8.16 Submodules

Obsolete Features [9]
9.11 MPLI CI' T UNDEFI NED
9.2 Type Statement with * n
9.3BYTEDataType
9.4 DOUBLE COMPLEX Statemen
9.5 STATI CAttribute and Statement
9.6 Slash Data Initialization
9.7 DATA Statement Features
9.8 Hollerith Data
9.8.1 Hollerith Constants
9.8.2 Hollerith Values
9.8.3 Hollerith Relational Expressions
9.9 PAUSE Statement
9.10 ASSI G, Assigned GO TO Statements, and Assigned Format Specifiers
9.10.1 Form of the ASSI GNand Assigned GO TO Statements
9.10.2 Assigned Format Specifiers
9.11 Two-branch | F Statements
9.11.1 Two-branch Arithmetic | F
9.11.2 Indirect Logica | F
9.12 Real and Double Precision DO Variables
9.13 Nested Loop Termination
9.14 Branching into a Block
9.15 ENCODE and DECODE Statements
9.15.1 ENCODE Statement
9.15.2 DECODE Statement S
9.16 BUFFER | Nand BUFFER OUT Statements
9.17 Asterisk Delimiters
9.18 Negative-valued X Descriptor
9.19 A and R Descriptors for Noncharacter Types

12

Page

171
171
172
172
172
172
173
173

175
176
176
176
177
177
179
179
179
180
181
181
182
182
183
184
184
185
185
185
185
186
186
186
187
188
191
191
191

S-3901-71

Contents

Page

9.20 H Edit Descriptor C e s s s e 192
9.21 Obsolete Intrinsic Procedures C e e 193
Cray Fortran Deferred Implementation and Optional Features[10] 201
10.11SO_10646 Character Set e e e 201
10.2 Redtrictions on Unlimited Polymorphic Variables 201
10.3 ENCODI NG=in I/O Statements C e 201
10.4 Allocatable Assignment (Optionally Enabled) 201
Cray Fortran Implementation Specifics [11] 203
11.1 Companion Processor e e s e 203
1121 NCLUDELine 203
11.3 | NTEGERKinds and Values e e 203
11.4 REAL Kindsand Values C e e e 203
11.5DOUBLE PRECI SI ONKindsandValues 204
11.6 LOG CAL Kindsand Values C e e e e 204
11.7 CHARACTER Kinds and Values C e 204
11.8Cray Pointers Lo e 204
1L9ENUMKInd 204
11.10 Storage Issues C e e e e e e 204
11.10.1 Storage Unitsand Sequenceso o 205
11.10.2 Staticand Stack Storageo oo 205
11.10.3 Dynamic Memory Allocation Ce e e 206
1111 Finalization L ..o e 207
1112 ALLOCATE Error Status 207
1113 DEALLOCATE Error Status 207
11.14 ALLOCATABLE Module Variable Status C e 207
11.15Kind of aLogical Expression L ..o 208
11.16 STOP Code Availability e e e 208
11.17 Stream File Record Structure and Position Ce e 208
1118 FileUnitNumberso 208
11.19 OPEN Specifiers C e s s s e 208
1120 FLUSHStatemento 209
11.21 Asynchronous1/O 209
11.22 REAL /O of an IEEE NaN e e s 209
11.22.1 Input of an IEEE NaN e e s 209
11.22.2 Output of an IEEE NaN C e e e e 210
11.23 List-directed and NAMEL| ST Output Default Formats 210

S-3901-71 13

Cray Fortran Reference Manual

11.24 Random Number Generator
11.25 Timing Intrinsics
11.26 |EEE Intrinsic Modules

Enhanced 1/0: Using the Assign Environment [12]

12.1 Understanding the assi gn Environment
12.1.1 Assign Objects and Open Processing
12.1.2assi gn Command Syntax
12.1.3 Using the Library Routines

12.2 Tuning File Connection Behavior
12.2.1 Using Alternative File Names
12.2.2 Specifying File Structure

12.2.2.1 Unblocked File Structure
12.2.2.2assi gn -s sbi n FileProcessing
12.22.3assi gn -s bi n FileProcessing
12.22.4assi gn -s u FileProcessing
12.2.25t ext File Structure .
12.2.2.6 cos or bl ocked File Structure
12.2.3 Specifying Buffer Behavior
12.2.3.1 Default Buffer Sizes
12.2.3.2 Library Buffering
12.2.3.3 System Cache
12.2.3.4 Unbuffered I/O
12.2.4 Specifying Foreign File Formats
12.2.5 Specifying Memory Resident Files
12.2.6 Using and Suppressing File Truncation
12.3 Defining the Assign Environment File
12.4 Using Local Assign Mode

Using Flexible File I/O (FFIO) [13]

13.1 Understanding FFIO

13.2 Using FFIO Layers
13.2.1 Available I/O Layers
13.2.2 Specifying Layered 1/O Options

13.3 Using FFIO with Common File Structures
13.3.1 Reading and Writing Text Files
13.3.2 Reading and Writing Unblocked Files
13.3.3 Reading and Writing Fixed-length Records

14

Page

211
211
211

213
213
214
215
218
219
219
220
222
223
223
224
224
224
226
227
228
229
229
229
230
230
231
231

233
233
235
236
237
238
238
239
240

S-3901-71

Contents

13.3.4 Reading and Writing Blocked Files
13.4 Tips for Enhancing 1/0 Performance
13.4.1 Buffer Size Considerations
13.4.2 Removing Blocking
134.21Thesyscal | Layer
13.4.2.2Thebuf a andcachea Layers
13.4.2.3Thent Layer

13.4.2.4Thegl obal Layer (Deferred Implementation)

13.4.25Thecache Layer
13.5 Sample Programs

FFIO Layer Reference [14]

14.1 Characteristics of Layers

14.2 Thebuf a Layer

14.3Thecache Layer

144 Thecachea Layer

145 The cos Blocked Layer

14.6 Theevent Layer

14.7 Thef 77 Layer

14.8 Thef d Layer Coe
149Thegl obal Layer (Deferred Implementation)
14.10 Thei bmLayer

14.11 Thenr Layer

14.12Thenul | Layer

14.13Thesyscal | Layer

14.14 Thesyst emLayer

14.15Thet ext Layer

14.16 Theuser andsi t e Layers

14.17 Thevns Layer

Creating auser Layer [15]
15.1 Internal Functions
15.1.1 The Operations Structure
15.1.2 FFIO and the st at Structure
15.2user Layer Example

Named Pipe Support [16]
16.1 Piped I/0 Example without End-of-file Detection
16.2 Detecting End-of-file on a Named Pipe

S-3901-71

Page

240
240
240
240
241
241
241
242
242
244

247
248
249
250
252
253
254
256
257
257
259
261
264
264
265
265
266
267

271
271
272
273
274

293
294
296

15

Cray Fortran Reference Manual

16.3 Piped 1/0 Example with End-of-file Detection
Glossary

Examples

Example 1. Unrolling outer loops

Example 2. Illegal unrolling of outer loops

Example 3. Unrolling nearest neighbor pattern
Example4. Local assign mode

Example5. Unformatted direct nT with unblocked file
Example 6. Unformatted sequential nT with blocked file
Example 7. No EOF Detection: programwr i t er d
Example8. No EOF Detection: program r eadwt
Example9. EOF Detection: programwri t erd

Example 10. EOF Detection: program r eadwt

Tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.

16

Compiling Options

Floating-point Optimization Levels

Automatic Inlining Specifications

File Types

Scaling Factor in Pointer Arithmetic

- Yphase Definitions

Directives

Explanation of Ignored TKRs

Operand Types and Results for Intrinsic Operations
Cray Fortran Intrinsic Bitwise Operators and the Allowed Types of their Operands
Data Typesin Bitwise Logical Operations
Values for Keyword Specifier Variablesin an OPEN Statement
Default Fractional and Exponent Digits
Summary of Control Edit Descriptors
Summary of Data Edit Descriptors
Default Compatibility Between I/O List Data Types and Data Edit Descriptors
REL AXED Compatibility Between Data Types and Data Edit Descriptors
STRI CT77 Compatibility Between Data Types and Data Edit Descriptors
STRI CT90 and STRI CT95 Compeatibility Between Data Types and Data Edit Descriptors
Cray Fortran |EEE Intrinsic Module Extensions
Obsolete Features and Preferred Alternatives
Summary of String Edit Descriptors

Page

296

299

100
101
101
232
244
245
295
295
297
297

25
45
49
50
69
73
81
121
155
156
156
159
160
163
163
163
164
164
164
169
175
193

S-3901-71

Contents

Table23. Obsolete Procedures and Alternatives
Table24. Assign Object Open Processing

Table25. Fortran Access Methods and Options

Table26. Default Buffer Sizes for Fortran I/O Library Routines
Table27. FFIO Layers .o

Table28. DataManipulation: buf a Layer

Table29. Supported Operations: buf a Layer

Table30. DataManipulation: cache Layer

Table31. Supported Operations: cache Layer
Table32. DataManipulation: cachea Layer

Table33. Supported Operations: cachea Layer
Table34. DataManipulation; cos Layer

Table35. Supported Operations: COS Layer

Table36. DataManipulation: f 77 Layer

Table37. Supported Operations: f 77 Layer

Table38. DataManipulation: gl obal Layer

Table39. Supported Operations: gl obal Layer -
Table40. Valuesfor Maximum Record Sizeoni bmLayer
Table4l. Valuesfor Maximum Block Sizeini bmLayer
Table42. DataManipulation: i bmLayer

Table43. Supported Operations: i bmLayer

Table44. DataManipulation: nT Layer

Table45. Supported Operations: NT Layer

Table46. DataManipulation: syscal | Layer
Table47. Supported Operations: syscal | Layer
Table48. DataManipulation: t ext Layer

Table49. Supported Operations: t ext Layer

Table50. Valuesfor Record Size: vins Layer

Table51. Valuesfor Maximum Block Size: virs Layer
Table52. DataManipulation: virs Layer

Table53. Supported Operations: Virs Layer

Table54. C Program Entry Points

Figures

Figure 1. Optimization Values

Figure2. Memory Use

Figure3. Access Methods and Default Buffer Sizes
Figure4. Typica Data Flow

S-3901-71

Page

193
214
222
228
236
250
250
251
251
252
253
254
254
256
256
258
258
260
260
260
261
263
263
264
265
266
266
267
268
268
269
272

42
207
231
233

17

Introduction [1]

This manual describes the Cray Fortran compiler for the Cray Compiling
Environment (CCE) 7.1 Release. This compiler supports Cray XT systems using the
Cray Linux Environment (CLE) operating system.

The Cray Fortran compiler supports | SO/IEC 1539-1:2004, the Fortran 2003
standard adopted by the International Organization for Standardization (1SO). This
compiler also supports selected features from the Fortran 2008 standard. The Fortran
2008 standard has not been formally adopted at this time. Fortran 2008 feature
implementations are based on the specifications in the Committee Draft (1ISO/IEC
SC22/WG5/N1776), and are subject to modification in the final standard.

The Cray Fortran compiler is also documented in man pages, beginning with the
crayf t n(1) man page. Where the information in this manual differs from the man
page, the information in the man page supersedes this manual.

1.1 The Cray Fortran Programming Environment

The Cray Fortran Programming Environment consists of the tools and libraries used
to develop Fortran applications. These are:

e Thef t n command, which invokes the Cray Fortran compiler. Theft n
command is properly termed a compiler driver, asit is used both to compile
source code into object code and to link object code files and libraries to create
executablefiles. This compiling and linking can be performed either as separate
processes or as one contiguous process, which has significant implications for file
handling considerations. These implications are described later in this section.
Seethe cr ayf t n(1) man page for more information

e CrayLibs libraries, which provides library routines, intrinsic procedures, 1/0
routines, and data conversion routines.

e Thef t nl x command, which generates listings and checks for possible errorsin
Fortran programs. Seethef t nl x(1) man page for more information.

S-3901-71 19

Cray Fortran Reference Manual

In addition, Fortran program development is supported by the following
asynchronous products.

e LibSci libraries, which provide scientific library routines.

e MPT, the Cray Message Passing Toolkit, which supports MPI and SHMEM.

e CrayPat, the optional Cray Performance Analysis toolkit.

» A variety of optional debuggers, available from Cray and other vendors.

The Cray Fortran compiler uses and creates several types of files during processing.
» Sourcefilesin fixed source form (. f or . F files).

e Sourcefilesinfreesourceform (. ftn,. FTN,. f 90, . F90, . f 95, . F95,
.f03,.F03,.f08, or. FO8, files).

» Files containing output from the source preprocessor (. i files).

» Relocatable object code (. o files). During compilation, these relocatabl e object
files are saved in the current directory automatically.

» |If specified, library files containing external references (. a files).

« |f specified, assembly language output (. s files). Fileswith . s extensions are
assembled and written to the corresponding . o file.

» During linking, object files are linked to form an executabl e file, which by default
isnamed a. out .

You can use f t n command line options to modify the default file handling
behavior. For example, usetheft n - 0 option to specify an executable name other
than a. out . Alternatively, if you use CrayPat to conduct performance analysis
experiments, you must keep the object files created during compilation in order

to preserve source-to-executable function mapping. To do so, usetheftn -h
keepfil es option.

For more information about command line options, see Chapter 2, Invoking the Cray
Fortran Compiler on page 23.

1.2 Cray Fortran Compiler Messages

The Cray Fortran compiler can produce many messages during compilation and
linking. To expand on these messages, use the expl ai n command. For more
information, see the expl ai n(1) man page.

20 S-3901-71

Introduction [1]

1.3 Document-specific Conventions
The following conventions are specific to this document:

Convention Meaning

Rnnn The Rnnn notation indicates that the feature isin the Fortran standard
and can be located in the standard via the Rnnn syntax rule number.

Cray pointer

Theterm Cray pointer refers to the Cray pointer data type extension.

1.4 Fortran Standard Compatibility

In the Fortran standard, the term processor means the combination of a Fortran
compiler and the computing system that executes the code. A processor conforms

to the standard if it compiles and executes programs that conform to the standard,
provided that the Fortran program is not too large or complex for the computer system
in question.

You can direct the compiler to flag and generate messages when nonstandard usage of
Fortran is encountered. For more information about this command line option (f t n
-en),see-d disableand - e enable on page 25 or thef t n(1) man page. When the
option isin effect, the compiler prints messages for extensions to the standard that
are used in the program. As required by the standard, the compiler also flags the
following items and provides the reason that the item is being flagged:

» Obsolescent features

» Deleted features

« Kind type parameters not supported

» Violations of any syntax rules and the accompanying constraints

e Characters not permitted by the processor

» |llegal source form

« Violations of the scope rules for names, labels, operators, and assignment symbols

The Cray Fortran compiler includes extensions to the Fortran standard. Because
the compiler processes programs according to the standard, it is considered to be

a standard-conforming processor. When the option to note deviations from the
Fortran standard isin effect (- en), extensionsto the standard are flagged with ANSI
messages when detected at compile time.

1.4.1 Fortran 95 Compatibility

No known issues.

S-3901-71 21

Cray Fortran Reference Manual

1.4.2 Fortran 90 Compatibility

No known issues.

1.5 Related Fortran Publications

For more information about the Fortran language and its history, consult the following
commercially available reference books.

e Fortran 2003 Standard can be downloaded from http://www.nag.co.uk/sc22wg5/.
The standard is aso available directly from the 1SO.

e Chapman, S. Fortran 95/2003 for Scientists & Engineers. McGraw Hill, 2007.
ISBN 0073191574.

e Metcdf, M., J. Reid, and M. Cohen. Fortran 95/2003 Explained. Oxford
University Press, 2004. ISBN 0-19-852693-8.

¢ Jeanne C. Adams, Walter S. Brainerd, Richard A. Hendrickson, Richard E.
Maine, Jeanne T. Martin, and Brian T. Smith, The Fortran 2003 Handbook:
The Complete Syntax, Features, and Procedures. Springer, 2009. 1SBN
978-1-84628-378-9.

22 S-3901-71

http://www.nag.co.uk/sc22wg5

Invoking the Cray Fortran Compiler [2]

S-3901-71

The following files are produced by or accepted by the Cray Fortran compiler:

File

a. out

file. a

Type

Default name of the executable output file. Seethe- o out file
option for information about specifying a different name for the
executable file.

Library filesto be searched for external references or modules.

file. cg and file. opt

file. f or file. F

Files containing decompilation of the intermediate representation of
the compiler. These listings resemble the format of the source code.
These files are generated when the - r d option is specified.

Input Fortran source file in fixed source form. If fileendsin . F, the
source preprocessor isinvoked. By default, macros are not expanded
in Fortran source statements. The - F option (see - F on page 32) is

required to enable expansion of macrosin Fortran source statements.

file. f 90, file. F90, file. f 95, file. F95, file. f 03, file. FO3, file. f 08, file. FO8,
file. ft n, file. FTN

file. i

file. | st

Input Fortran source file in free source form. If fileendsin . F90,
. F95, . F03,. F08, or . FTN, the source preprocessor is invoked.
By default, macros are not expanded in Fortran source statements.
Use the - F option to enable macro expansion in Fortran source
Statements.

Note: The file suffix does not restrict the source file to a given
standard. Regardless of the file suffix, the Cray Fortran compiler
processes the file according to the full current Fortran standard.
For example, a source file with the suffix . f 90 may contain code
using language features not implemented until the Fortran 2003
standard.

File containing output from the source preprocessor.

Listing file.

23

Cray Fortran Reference Manual

file. o Relocatable object file.
file. s Assembly language file.
modulename. nmod

If the - emoption is specified, the compiler writes a
modulename. nod file for each module; modulename is created by
taking the name of the module and, if necessary, converting it to
uppercase. This file contains module information, including any
contained module procedures.

The syntax of the f t n command is as follows:

ftn [-A module name[, module name] ...] [-b bin_obj_filg]
-c] [-d disable] [-D identifier[= value]]

-e enable] [-f source form]

-F] [-9] [-G debug IM] [-h arg], [-] incldir]

[

|

[-J dir_name] [-I lib file] [-L Idir] [-m msg_Ivi]

[-Mmsgs] [-N col] [-o outfile] [-Oopt[,opt] . . .]

[-p module site] [-Q path] [-r list_opt] [-R runchk]

[-s size] [-S asmfilel [-T] [-U identifier[, identifier] ...]

[-v] [-V] [-Wphase, "opt..."] _ _

[-x dirlisf] [-X npes] [- Yphase dirname] [--] sourcefile [sourcefile . . .]

Note: Some default values shown for f t n command options may have been
changed by your site. See your system support staff for details.

2.1 - A module name[, module name] ...

The- A module name[, module name] ... option directs the compiler to behave
asif you entered a USE module_name statement for each module_name in your
Fortran source code. The USE statements are entered in every program unit and
interface body in the source file being compiled.

2.2 -b bin_obj file

The-b bin_obj file option disables the load step and saves the binary object file
version of your program in bin_obj_file.

Only oneinput fileis alowed when the- b bin_obj_file option is specified. If you
have more than one input file, use the - ¢ option to disable the load step and save the
binary filesto their default file names. If only one input fileis processed and neither
the - b nor the - ¢ option is specified, the binary version of your program is not saved
after the load is compl eted.

If boththe- b bin_obj file and - ¢ options are specified on the f t n command line,
the load step is disabled and the binary object file iswritten to the name specified as
the argument to the - b bin_obj_file option. For more information about the - ¢
option, see - ¢ on page 25.

24 S-3901-71

Invoking the Cray Fortran Compiler [2]

23 -C

By default, the binary fileis saved in file. o, where file is the name of the source
fileand . o isthe suffix used.

The - ¢ option disables the load step and saves the binary object file version of your
program in file. o, wherefile is the name of the source fileand . o isthe suffix used.
If thereis more than oneinput file, afile. o iscreated for each input file specified. By
default, this option is off.

If only one input file is processed and neither the - b bin_obj_file nor the - ¢
options are specified, the binary version of your program is not saved after the load
is completed.

If boththe- b bin_obj fileand - ¢ options are specified on the f t n command line,
the load step is disabled and the binary object file is written to the name specified
as the argument to the- b bin_obj_file option. For more information about the

-b bin_obj_file option, see- b bin_obj_file on page 24.

If boththe- 0 out_file and the - ¢ option are specified on the f t n command line,
the load step is disabled and the binary file is written to the out_file specified as an
argument to - 0. For more information about the- o out_file option, see- o out _file
on page 58.

2.4 -d disableand - e enable

S-3901-71

The-d disable and - e enable options disable or enable compiling options. To
specify more than one compiling option, enter the options without separators between
them; for example, - eaf . Table 1 shows the arguments to use for disable or enable.

Table 1. Compiling Options

args Action, if enabled

0 (Deferred implementation) Initializes all undefined local numeric
stack variablesto O. If auser variable is of type character, it is
initialized to NUL. If auser variable is type logicd, it isinitialized
to false. The variables are initialized upon each execution of each
procedure. Enabling this option can help identify problems caused by
using uninitialized numeric and logical variables.

Default: disabled

a Aborts compilation after encountering the first error.

Default: disabled

25

Cray Fortran Reference Manual

args

Action, if enabled

26

Generates binary output. If disabled, inhibits all optimization and
alows only syntactic and semantic checking.

Default: enabled

Interface checking: use Cray's system modules to check library calls
in acompilation. If you have a procedure with the same name as
onein the library, you will get errors as the compiler does not skip
user-specified procedures when performing the checks.

Default: disabled

Enable/disable some types of standard call site checking. The current
Fortran standard reqguires that the number and types of arguments
must agree between the caller and callee. These constraints are
enforced in cases where the compiler can detect them, however,
specifying - dC disables some of this error-checking, which may be
necessary in order to get some older Fortran codes to compile.

Note: If error-checking is disabled, unexpected compile-time or
runtime results may occur.

In addition, the compiler by default attempts to detect situations in
which an interface block should be specified but is not. Specifying
- dC disables this type of checking as well.

Default: enabled

Controls a column-oriented debugging feature when using fixed
source form. When the option is enabled, the compiler replaces the
Dor d characters appearing in column 1 of your source with a blank
and treats the entire line as a valid source line. This feature can be
useful, for example, during debugging if you want to insert PRI NT
statements.

When disabled, a D or d character in column 1 is treated as a
comment character.
Default: disabled

Turns on al debugging information. This option is equivalent to
specifying these options: - 0, - g, - 2, - R bcdspi ,and-rl .
See dlso - ed.

Default: disabled

S-3901-71

Invoking the Cray Fortran Compiler [2]

args Action, if enabled

E The - eE option alows existing declarations to duplicate the
declarations contained in a used module. Therefore, you do not have
to modify the older code by removing the existing declarations.
Because the declarations are not removed, the use associated objects
will duplicate declarations aready in the code, which is not standard
conforming. However, this option allows the compiler to accept these
statements as long as the declarations match the declarations in the
module.

Existing declarations of a procedure must match the interface
definitions in the module; otherwise an error is generated. Only
existing declarations that declare the function name or generic name
in an EXTERNAL or type statement are allowable under this option.

This example illustrates some of the acceptable types of existing
declarations. Program ol der contains the older code, while module
mcontains the interfaces to check.
nmodul e m
interface

subroutine one(r)

real :: r
end subroutine

function two()
integer :: two
end function
end interface
end nodul e

pr ogram ol der

use m I'Or use -Amon the conpiler comand |ine
ext ernal one 1 Use associ ated objects
integer :: two !in declarative statenents

call one(r)
j = two()
end program

Default: disabled

S-3901-71 27

Cray Fortran Reference Manual

28

args

Action, if enabled

Allows branching into the code block for aDOor DO VWHI LE
construct. Historically, codes used branches out of and into DO
constructs. Fortran standards prohibit branching into a DO construct
from outside of that construct. By default, the Cray Fortran compiler
will issue an error for this situation. Cray does not recommend
branching into a DO construct, but if you specify - eg, the code will
compile.

Default: disabled

Enables support for 8-bit and 16-bit | NTEGER and LOG CAL types
that use explicit kind or star values.

By default (- eh), data objects declared as | NTEGER(ki nd=1)

or LOQ CAL(ki nd=1) are 8 hits long, and objects declared

as| NTEGER(ki nd=2) or LOG CAL(ki nd=2) are 16 bits

long. When this option is disabled (- dh), data objects declared as

| NTEGER(ki nd=1) , | NTEGER(ki nd=2) , LOd CAL(ki nd=1),
or LOG CAL(ki nd=2) are 32 hitslong.

Note: Vectorization of 8- and 16-bit objects is deferred.

Default: enabled

Treats all variablesasif an1 MPLI CI T NONE statement had been
specified. Does not override any | MPLI CI T statements or explicit
type statements. All variables must be typed.

Default: disabled
Executes DO loops at least once.

Default: disabled

When this option is enabled, the compiler creates . nod filesto
hold module information for future compiles. When it is disabled,
and a module is compiled, the compiler deletes any existing
MODULENAME. nod filesit finds in the output directory before
creating new module information in the . o file.

By default, module files are written to the directory from which the
ft n command is executed. You can use the- J dir_name option to
specify an alternate output directory for . nod files only. For more

information about the - J dir_name option, see-J dir_name on

page 39.

Whether this option is enabled or disabled, the search order for
satisfying modules references in USE statementsis as follows:

S-3901-71

Invoking the Cray Fortran Compiler [2]

S-3901-71

Action, if enabled

The current working directory.
Any directories or files specified with the - p option.

Any directories specified with the - | option.

A 0w NP

Any directories or files specified with the FTN_MODULE_PATH
environment variable.

When searching within a directory, the compiler first checks al . nod
files, then the . o files, and then the . a files.

Note: The compiler creates modules through the MODULE
statement. A module is referenced with the USE statement. All

. od files are named modulename. nod, where modulename is the
name of the module specified in the MODULE or USE statement.

Default: disabled

Generates messages to note all nonstandard Fortran usage.

Default: disabled

Display to st der r the optimization options used by the compiler
for this compilation.

Default: disabled
Performs source preprocessing on Fortran source files, but does not
compile (see sourcefile] sourcefile. suffix . ..] on page 74 for

valid file extensions). When specified, source code is included by

#i ncl ude directives but not by Fortran | NCLUDE lines. Generates
file. i , which contains the source code after the preprocessing has
been performed and the effects applied to the source program. By
default, macros are not expanded in Fortran source statements. Use
the - F option to enable macro expansion in Fortran source statements.
For more information about source preprocessing, see Chapter 5,
Source Preprocessing on page 125.

Default: disabled

Aborts compilation if 100 or more errors are generated.

Default: enabled

29

Cray Fortran Reference Manual

30

args

Action, if enabled

Controls whether or not the compiler accepts variable names that
begin with aleading underscore (_) character. For example, when Q
is enabled, the compiler accepts _ANT as avariable name. Enabling
this option can cause collisions with system name space (for example,
library entry point names).

Default: disabled

Compiles all functions and subroutines as if they had been defined
with the RECURSI VE attribute.

Default: disabled

Scale the values of al KI ND=4 count and count_rate arguments for
the SYSTEM CLOCK intrinsic function. Since the value of a 32-bit
count argument can quickly wrap around to zero, the value of count
is scaled down by a factor of 2048. KI ND=4 count_rate is scaled

in the same way. The Fortran Standard allows using different kind
arguments to count and count_rate, so this scaling can be disabled.
Care should be taken to make sure count and count_rate are the same
kind if this scaling is enabled.

Default; enabled

Generates assembly language output and savesit in file. s. When
the - eS option is specified on the command line with the - S
asm file option, the- S asm file option overridesthe - eS option.

Default: disabled

Allocates variables to static storage. These variables are treated

asif they had appeared in a SAVE statement. The following

types of variables are not allocated to static storage: automatic
variables (explicitly or implicitly stated), variables declared with

the AUTOVATI C attribute, variables allocated in an ALLOCATE
statement, and local variables in explicit recursive procedures.
Variables with the ALLOCATABLE attribute remain allocated upon
procedure exit, unless explicitly deallocated, but they are not allocated
in static memory. Variables in explicit recursive procedures consist

of those in functions, in subroutines, and in internal procedures
within functions and subroutines that have been defined with the
RECURSI VE attribute. The STACK compiler directive overrides- ev;
for more information about this compiler directive, see Request Stack
Storage: STACK on page 115.

Default: disabled

S-3901-71

Invoking the Cray Fortran Compiler [2]

args Action, if enabled

w Enables support for automatic memory allocation for allocatable
variables and arrays that are on the left hand side of intrinsic
assignment statements.

The option can potentially decrease runtime performance, even
when automatic memory allocation is not needed. It will affect
optimizations for a code region containing an assignment to
alocatable variables or arrays. For example, it could easily prevent
loop fusion for multiple array syntax assignment statements with the
same shape.

Default: disabled

y (Deferred implementation) Adds information into the binary files
that allows the compiler driver to find the modules when used in
subsequent compiles. The - dy option disables thisinformation.

Enabling this option is useful if the binary files for the Fortran
modules are not moved prior to the load step. The compiler driver
can then find these binaries without the user adding them to the load
line. If the module binary files will be moved before the load step,
this option should be disabled and the module binary files must be
explicitly specified on the load line. Often thisis the case when
module binaries are added to a library archivefile.

Default: disabled
z Performs source preprocessing and compilation on Fortran source
files (see sourcefile] sourcefile. suffix . ..] onpage 74 for valid file

extensions). When specified, source code isincluded by #i ncl ude
directives and by Fortran | NCLUDE lines. Generatesfile. i , which
contains the source code after the preprocessing has been performed
and the effects applied to the source program. By default, macros
are not expanded in Fortran source statements. Use the - F option
to enable macro expansion in Fortran source statements. For more
information about source preprocessing, see Chapter 5, Source
Preprocessing on page 125.

Default: disabled

S-3901-71 31

Cray Fortran Reference Manual

2.5 - D identifier [=valug]

The- Didentifier] =value] option defines variables used for source preprocessing as
if they had been defined by a#def i ne source preprocessing directive. If avalueis
specified, there can be no spaces on either side of the equal sign (=). If no valueis
specified, the default value of 1 is used.

The - U option undefines variables used for source preprocessing. If both - Dand - U
are used for the same identifier, in any order, the identifier is undefined. For more
information about the - U option, see- U identifier [, identifier] ... on page 70.

This option isignored unless one of the following conditionsis true:

» The Fortran input source file is specified as either file. F, file. F90, file. F95,
file. FO3, file. FO8, or file. FTN.

e The- eP or - eZ options have been specified.

By default, macros are not expanded in Fortran source statements. Use the - F option
to enable macro expansion in Fortran source statements.

For more information about source preprocessing, see Chapter 5, Source
Preprocessing on page 125.

2.6 -f source form

2.7 -F

32

The-f source form option specifies whether the Fortran source file iswritten in
fixed source form or free source form. For source form, enter f r ee or f i xed.
The source_form specified here overrides any source form implied by the source file
suffix. A FI XED or FREE directive specified in the source code overrides this option
(see Specify Source Form: FREE and FI XED on page 113).

The default source formisf i xed for input filesthat havethe . f or . F suffix. The
default source formisf r ee for input filesthat have the. f 90, . F90, . f 95, . F95,
.f03,. F03,.f08,. F08,.ftn, or. FTNsuffix. Note that the Fortran standard
has declared fixed source form to be obsolescent.

If thefilehasa. F,. F90, . F95, . FO3, . FO8, or . FTN suffix, the source
preprocessor is invoked. See Chapter 5, Source Preprocessing on page 125 about
preprocessing.

The - F option enables macro expansion throughout the source file. Typically, macro
expansion occurs only on source preprocessing directive lines. By default, this option
is off.

S-3901-71

Invoking the Cray Fortran Compiler [2]

28 -9

This option isignored unless one of the following conditions is true:

» The Fortran input source file is specified as either file. F, file. F90, file. F95,
file. FO3, file. FO8, or file. FTN.

e The- eP or - eZ option was specified.

For more information about source preprocessing, see Chapter 5, Source
Preprocessing on page 125.

The - g option provides debugging support identical to specifying the - Q0 option.
Default: off

2.9 - G debug_Ivi

S-3901-71

The - G debug_IVl option controls the tradeoffs between ease of debugging and
compiler optimizations. The compiler produces some level of internal debugger
information (DWARF) at all times. This DWARF data provides function and source
line information to debuggers for tracebacks and breakpoints, as well as type and
location information about data variables.

Note: The- g or - Goptions can be specified on a per-file basis, so that only part
of an application pays the price for improved debugging.

debug vl Support

0 Optimizations disabled: full DWARF information is available
for debugging, but at the cost of a slower and larger executable.
Breakpoints can be set at each line. Thisleve of debugging is
supported when optimization is disabled; that is, when - Q0, - O
i pa0,-0O scal ar0,-0O thread0,and- O vectorO arein
effect.

1 Partial optimization: most DWARF and at least some optimizations
make tracebacks and limited breakpoints available in the debugger.
Some scalar optimizations and all loop nest restructuring is disabled,
but the source code will be visible and most symbols will be
available. This allows block-by-block debugging, with the exception
of innermost loops. The executable will be faster than with - g or
- Q0.

33

Cray Fortran Reference Manual

2 Full optimization: with partial DWARF and most optimizations,
tracebacks and very limited breakpoints are available in the debugger.
The source code will be visible and some symbols will be available.
Thislevel allows post-mortem debugging, but local information
such as the value of aloop index variable is not necessarily reliable
at this level because such information often is carried in registers
in optimized code. The executable will be faster and smaller than
with - GL.

2.10 -h arg

The - h arg allows you to access various compiler functionality. For more
information about what to specify for arg, see the following subsections.

2.10.1 - h [no] aut ot hr ead

The-h [no] aut ot hr ead option enables or disables autothreading.

Default: - h noaut ot hr ead

2.10.2 -h cachen

The-h cachen option specifies the level of automatic cache management to be
performed, where n is avalue from 0 to 3 with O being no cache management and 3
being the most aggressive cache management. Thisisidentical tothe- O cachen
option and is provided for command-line compatibility with the Cray C compiler. For
more information, see - O cachen on page 44.

Default: -h cache?2

2.10.3 -h [no] caf

The-h caf option enables the compiler to recognize coarray syntax. Coarrays are a
Fortran 2008 feature that offer a method for performing data passing. Coarrays are
discussed in more detail in Coarrays on page 170.

Data passing is an effective method for programming single-program-multiple-data
(SPMD) parallelism. Its chief advantages over MPI are lower latency and high
bandwidth for data transfers, both of which lead to improved scalability for parallel
applications. Compared to MPI and SHMEM, programs using coarrays are also more
human-readable, and thus increase programmer productivity. As alanguage feature,
the code can be conditionally analyzed and optimized by the compiler.

Coarray recognition is off (- h nocaf) by default.

34 S-3901-71

Invoking the Cray Fortran Compiler [2]

2.10.4 - h cpu=target_system

The- h cpu=target_system option specifies the Cray system on which the absolute
binary file isto be executed, where target_system can be either x86- 64, opt er on,
bar cel ona, shanghai , ori st anbul .

Thex86- 64 and opt er on options produce identical output, for use on single- and
dual-core systems. If you are creating executables for use on a system with quad-core
processors (either AMD Opteron bar cel ona or shanghai processors), you must
also have the associated module (either xt pe- bar cel ona or xt pe- shanghai)
loaded when compiling and linking your code. Likewise, if you are creating
executables for use on a system with AMD Opteron six-core processors (code named
i st anbul), you must have the xt pe- i st anbul module loaded when compiling
and linking your code. If one of these modules is loaded, the default target_system
changes to the corresponding cpu target.

If thetarget_systemis set to bar cel ona, shanghai , ori st anbul during
compilation of any sourcefile, it must also be set to that same target during linking
and loading.

The target system may aso be specified using the CRAY_PE_TARGET environment
variable. For more information, see CRAY _PE_TARGET Environment Variable on

page 76.
Default: x86- 64

2.10.5 - h di spl ay_opt

The-h di spl ay_opt option displays the compiler optimization settings currently
in force. Thisoption isidentical to the - eo option and is provided for command-line
compatibility with the Cray C compiler.

2.10.6 -h [no] dwarf

The-h [no] dwar f option controls whether DWARF debugging information is
generated during compilation.

Default: dwar f

S-3901-71 35

Cray Fortran Reference Manual

2.10.7 -h func_trace

The-h func_trace optionisfor use only with CrayPat (Cray performance
analysistool). If this option is specified, the compiler inserts CrayPat entry points
into each function in the compiled source file. The names of the entry points are:

__pat_tp_func_entry
__pat_tp_func_return

These are resolved by CrayPat when the program is instrumented using the

pat _bui | d command. When the instrumented program is executed and it
encounters either of these entry points, CrayPat captures the address of the current
function and its return address.

2.10.8 -h keepfiles

The-h keepfil es option prevents the removal of the object (. 0) and temporary
assembly (. s) files after an executable is created. Normally, the compiler
automatically removes these files after linking them to create an executable. Since the
original object files are required in order to instrument a program for performance
analysis, if you plan to use CrayPat to conduct performance analysis experiments, you
can use this option to preserve the object files.

2.10.9 -h [no] negs

The-h [no] nmsgs option causes the compiler to write optimization messages to
stderr. Thisoptionisidentical tothe- O [no] nsgs option and is provided for
command-line compatibility with the Cray C compiler. For more information, see- O
[no] nsgs on page 51.

Default: - h nonmsgs

2.10.10 - h [no] negnsgs

The-h [no] negnsgs option causes the compiler to generate messages

to st der r explaining why optimizations did not occur in a given instance.

This option isidentical to the- O [no] negnsgs option and is provided for
command-line compatibility with the Cray C compiler. For more information, see
- O [no] negnsgs on page 52.

Default: - h nonegnsgs

36 S-3901-71

Invoking the Cray Fortran Compiler [2]

2.10.11 - h net wor k=nic

The-h net wor k=nic option is used to specify the target machine's interconnection
attributes. The only value currently supported isseast ar .

Default: seast ar

2.10.12 -h [no] onp

The-h [no] onp option enables or disables compiler recognition of OpenMP
directives. Usingthe- h noonp optionissimilar tothe- h t hr eadO option, in
that it disables OpenMP, but unlike - h t hr eadO it does not affect autothreading.
The-h [no] onp optionisidentical tothe- O [no] onp option and is provided
for command-line compatibility with the Cray C compiler. For more information,
see- O [no] onp on page 52.

Default: - h omp

2.10.13 -h [no]onp_trace

The-h [no] onp_t race turnsthe insertion of CrayPat OpenMP tracing calls on
or off. By default tracing is off.

Default: - h noonp_trace

2.10.14 -h page_align_allocate

The-h page_al i gn_al | ocat e option directs the compiler to force allocations
of arrays larger than the memory page size to be aligned on a page boundary. This
option affects only the ALLOCATE statements of the current source file; therefore

it must be specified for each source file where this behavior is desired. Using this
option can improve DI RECTI O performance.

2.10.15 -h profil e _generate

S-3901-71

The-h profil e_gener at e option lets you request that the source code be
instrumented for profile information gathering with CrayPat (Cray performance
analysistool). The compiler inserts calls and data gathering instructions that enable
CrayPat to gather information about the loops in a compilation unit. In order to get
useful data out of thisfeature, the CrayPat pat _bui | d command must then be run
on the resulting executable in order to link in the CrayPat data gathering routines. If
thisis not done, the code will still execute, however, no datais recorded. For more
information, seethei nt r o_cr aypat (1) man page.

37

Cray Fortran Reference Manual

2.10.16 - h [no] second_underscore

The-h [no] second_under scor e option controls the way in which external
names are generated. By default, the compiler generates external names in lower
case and will add one trailing underscore (_). This behavior matches the PGI
Fortran compiler's external behavior. If - h second_under scor e is specified,
the compiler adds a second trailing underscore if the original external name has
any underscoresin it. This behavior matches the GNU compiler's external naming
behavior.

Default: - h nosecond_under score

2.10.17 -h t hreadn

2.11 -1

38

The-h t hr eadn option enables you to control the compilation and optimization of
OpenMP and autothreading directives, where n is avalue from 0 to 3 with O being
off and 3 specifying the most aggressive optimization. Thisoption isidentical to the
- O t hr eadn option and is provided for command-line compatibility with the Cray
C compiler. For more information, see- O t hr eadn on page 56.

Default; -h t hread2

incldir

The- 1 incldir option specifies a directory to be searched for files named in

| NCLUDE lines in the Fortran source file and for files named in #i ncl ude source
preprocessing directives. Additionally, all user-specified - | incldir directories are
searched for MODULE USE resolution after all user-specified - p paths are searched.

You must specify an - | option for each directory you want searched. Directories can
be specified in incldir as full path names or as path names relative to the working
directory. By default, only the directory of the file referencing the included file and
system directories are searched. None of the system-specified - | incldir directories
are searched during MODULE USE resolution.

The following example causes the compiler to search for files included within
earth. f inthedirectories/ usr/ | ocal / sunand. ./ noon:

%ftn -1 /usr/local/sun -1 ../moon earth.f

If the | NCLUDE line or #i ncl ude directive in the source file specifies an absolute
name (that is, one that begins with aslash (/)), that name is used, and no other
directory is searched. If arelative nameis used (that is, one that does not begin with
adash (/)), the compiler searches for the file in the directory of the source file
containing the | NCLUDE line or #i ncl ude directive. If this directory contains no
file of that name, the compiler then searches the directories named by the - | options,
as specified on the command line, from left to right.

S-3901-71

Invoking the Cray Fortran Compiler [2]

2.12 -J dir_name

The-J dir_name option specifies the directory to which file. nod files are written
when the- e moption is specified on the command line. By default, the module files
are written to the directory from which the f t n command was entered.

The compiler will automatically search the dir_name directory for modules to satisfy
USE statements. An error isissued if the - emoption is not specified when the - J
dir_nameis used.

2.13 -1 libname

The-1 libname option directs the compiler driver to search for the specified object
library file when loading an executable file. To request more than one library file,
specify multiple - | options.

The compiler driver searches for libraries by prepending Idir/ | i b on the front of
libname and appending . a on the end of it, for each Idir that has been specified by
using the - L option. It usesthefirst fileit finds. See also the - L option.

For more information about library search rules, see- L Idir on page 39.

2.14 - L Idir

The- L Idir option directs the compiler driver to look for library filesin directory
Idir. To request more than one library directory, specify multiple - L options.

The compiler driver searches for library filesin directory Idir before searching the
default directories: / opt/ctl/libsand/Ilib.

For example, if -L ../ mylib,-L /loclib,and-1 mare specified, the
compiler driver searches for the following files and uses the first one found:
../nmylibs/libma

[loclib/libma

[opt/ctl/libs/libma
/lib/libma

For information about specifying module locations, see - p
module_site] , module _site] on page 58.

2.15 - m msg_|vi

The - m msg_Ivl option specifies the minimum compiler message levels to enable.
The following list shows the integers to specify in order to enable each type of
message and which messages are generated by default.

S-3901-71 39

Cray Fortran Reference Manual

2.16 - M msgs

40

msg vl M essage types enabled

Error, warning, caution, note, and comment
Error, warning, caution, and note
Error, warning, and caution

Error and warning (default)

A W N B O

Error

Caution and warning messages denote, respectively, possible and probable user
errors.

By default, messages are sent to the standard error file, st der r , and are displayed
on your terminal. If the- r option is specified, messages are also sent to the listing
file.

To see more detailed explanations of messages, use the expl ai n command. This
command retrieves message explanations and displays them online. For example, to
obtain documentation on message 500, enter the following command:

% expl ai n ftn-500

The default msg_Ivl is 3, which suppresses messages at the comment, note, and
caution level. It is not possible to suppress messages at the error level. To suppress
specific comment, note, caution, and warning messages, see - M msgs on page 40.

To obtain messages regarding nonstandard Fortran usage, specify - e n. For more
information about this option, see- d disableand - e enable on page 25.

The - M msgs option suppresses specific messages at the warning, caution, note,
and comment levels and can change the default message severity to an error or a
warning level. You cannot suppress or ater the severity of error-level messages with
this option.

To suppress messages, specify one or more integer numbers that correspond to the
Cray Fortran compiler messages you want to suppress. To specify more than one
message number, specify a comma (but no spaces) between the message numbers.
For example, - M 110, 300 suppresses messages 110 and 300.

To change a message's severity to an error level or awarning level, specify an E
(for error) or a W(for warning) and then the number of the message. For example,
consider the following option: - M 300, E600, WI00. This specification resultsin
the following messages:

S-3901-71

Invoking the Cray Fortran Compiler [2]

» Message 300 isdisabled and is not issued, provided that it is not an error-level
message by default. Error-level messages cannot be suppressed and cannot have
their severity downgraded.

* Message 600 isissued as an error-level message, regardless of its default severity.

* Message 400 isissued as a warning-level message, provided that it is not an
error-level message by default.

2.17 - N col

The- N col option specifiesthe line width for fixed- and free-format source lines.
The value used for col specifies the maximum number of columns per line.

For free form sources, col can be set to 132 or 255.
For fixed form sources, col can be set to 72, 80, 132, or 255.
Charactersin columns beyond the col specification are ignored.

By default, lines are 72 characters wide for fixed-format sources and 132 characters
wide for free-form sources.

2.18 -O opt [, opt] ...

The- O opt option specifies optimization features. You can specify more than one
- Ooption, with accompanying arguments, on the command line. |f specifying more
than one argument to - O, separate the individual arguments with commas and do
not include intervening spaces.

Note: The - eo option or the f t nl x command displays all the optimization
options the compiler uses at compile time.

The-0 0,-0 1,-0 2,and- O 3 options alow you to specify a general level of
optimization that includes vectorization, scalar optimization, and inlining. Generally,
as the optimization level increases, compilation time increases and execution time
decreases.

The-0O 1,- 0O 2,and- O 3 specifications do not directly correspond to the numeric
optimization levels for scalar optimization, vectorization, and inlining. For example,
specifying - O 3 does not necessarily enablevect or 3. Cray reservestheright to
ater the specific optimizations performed at these levels from release to release.

S-3901-71 41

Cray Fortran Reference Manual

42

The other optimization options, such as- O aggr ess and - O cachen, control
pattern matching, cache management, zero incrementing, and several other
optimization features. Some of these features can also be controlled through compiler

directives.

Figure 1 shows the relationships between some of the- O opt values.

Figure 1. Optimization Values

Low compile cost

Moderate compile cost

Potentially high compile cost

No numerical differences from serial
execution (no vector/thread reductions)

Potential numerical differences from
serial execution (vector/thread
reductions)

Potential numerical differences from
unoptimized execution (operator
reassociation)

No optimizations that may create
exceptions

Optimizations that may create
exceptions

Implies at least scalar1

Implies at least scalar2

Loop nest restructuring

x

Vectorize array syntax statements

OpenMP disabled

S-3901-71

Invoking the Cray Fortran Compiler [2]

2181 -On

The - On option performs general optimization at these levels: 0 (none), 1
(conservative), 2 (moderate, default), and 3 (aggressive).

The - O 0 option inhibits optimization including inlining. This option's
characteristics include low compile time, small compile size, and no global scalar
optimization.

Most array syntax statements are vectorized, but all other vectorizations are
disabled.

The - O 1 option specifies conservative optimization. This option's
characteristics include moderate compile time and size, global scalar
optimizations, and loop nest restructuring. Results may differ from the results
obtained when - O 0 is specified because of operator reassociation. No
optimizations will be performed that might create fal se exceptions.

Only array syntax statements and inner loops are vectorized and the system does
not perform some vector reductions. User tasking is enabled, so ! $OVP directives
are recognized.

The- O 2 option specifies moderate optimization. This option's characteristics
include moderate compile time and size, global scalar optimizations, pattern
matching, and loop nest restructuring.

Results may differ from results obtained when - O 1 is specified because of
vector reductions. The - O 2 option enables automatic vectorization of array
syntax and entire loop nests.

Thisisthe default level of optimization.

The- O 3 option specifies aggressive optimization. This option's characteristics
include a potentially larger compile size, longer compile time, global scalar
optimizations, possible loop nest restructuring, and pattern matching. The
optimizations performed might create false exceptionsin rare instances.

Results may differ from results obtained when - O 1 is specified because of
vector reductions.

2.18.2 - O [no] aggr ess

S-3901-71

The- O aggr ess option causes the compiler to treat a program unit (for example, a
subroutine or a function) as a single optimization region. Doing so can improve the
optimization of large program units by raising the limits for internal tables, which
increases opportunities for optimization. This option increases compile time and size.

Default: - O noaggr ess

43

Cray Fortran Reference Manual

2.18.3 - O cachen

2.18.4 -0O fpn

44

The - O cachen option specifies the following levels of automatic cache
management.

- O cache0 specifies no automatic cache management; all memory references
are allocated to cache. Both automatic cache blocking and manual cache blocking
(by use of the BLOCKABLE directive, as described in Permit Cache Blocking:
BLOCKABLE Directive on page 113) are shut off. Characteristics include low
compile time.

The- O cache0 option is compatible with all scalar and vector optimization
levels.

- O cachel specifies conservative automatic cache management.
Characteristics include moderate compile time. Data are placed in the cache when
the possibility of cache reuse exists and the predicted cache footprint of the datum
inisolation is small enough to experience the reuse.

- O cache2 specifies moderately aggressive automatic cache management.
Characteristics include moderate compile time. Data are placed in the cache when
the possibility of cache reuse exists and the predicted state of the cache model is
such that the datum will experience the reuse.

- O cache3 specifies aggressive automatic cache management. Characteristics
include potentialy high compile time. Data are placed in the cache when the
possibility of cache reuse exists and the allocation of the datum to the cache is
predicted to increase the number of cache hits.

Default: - O cache?

The - O f p option alows you to control the level of floating-point optimizations.
The n argument controls the level of alowable optimization; O gives the compiler
minimum freedom to optimize floating-point operations, while 3 gives it maximum
freedom. The higher the level, the less the floating-point operations conform to the
|EEE standard.

Thisoption is useful for code that uses unstable algorithms, but which is optimizable.
It isaso useful for applications that want aggressive floating-point optimizations that
go beyond what the Fortran standard allows.

S-3901-71

Invoking the Cray Fortran Compiler [2]

Generally, thisis the behavior and usage for each - O f p level:

e - O fpO causes your program's executable code to conform more closely to
the IEEE floating-point standard than the default mode (- O f p2). When this
level is specified, many identity optimizations are disabled, executable code is
slower than higher floating-point optimization levels, floating point reductions are
disabled, and a scaled complex divide mechanism is enabled that increases the
range of complex values that can be handled without producing an underflow.

The- O f p0 option should only be used when your code pushes the limits of
|EEE accuracy or requires strong | EEE standard conformance.

e -0 fpl performsvarious, generally safe, IEEE non-conforming optimizations,
suchasfoldinga == atotrue, wherea isafloating point object. At this
level, floating-point reassociation? is greatly limited, which may affect the
performance of your code.

The- O f p1 options should only be used when your code pushes the limits of
|EEE accuracy, or requires substantial |EEE standard conformance.

e -0 fp2includes optimizationsof - O f pl. Thisisthe default.
e -0 fp3includes optimizationsof - O f pl and- O f p2.

The- O f p3 option should be used when performance is more critical than the
level of IEEE standard conformance provided by - O f p2.

Table 2 compares the various optimization levels of the- O f p option (levels 2 and
3 are usually the same). The table lists some of the optimizations performed; the
compiler may perform other optimizations not listed.

Table 2. Floating-point Optimization Levels

Optimization

Type f pO fpl f p2 (default) fp3

Complex Accurate and slower Accurate and Less accurate (less Less accurate (less
divisions slower precision) and faster. precision) and faster.
Exponentiation None None Maximum Maximum

rewrite performance? performance? 3
Strength Fast Fast Aggressive Aggressive
reduction

1 Anexample of reassociation is when a+b+c isrearranged to b+a+c, where a, b, and ¢ are floating
point variables.

2 Rewriting values raised to a constant power into an algebraically equivalent series of multiplications
and/or square roots.

3 Rewriting exponentiations (a°) not previously optimized into the algebraically equivalent form exp(b
* In(a)).

S-3901-71 45

Cray Fortran Reference Manual

Optimization

Type f pO fpl f p2 (default) fp3
Rewrite None None Yes Aggressive
division as

reciprocal

equivalent 4

Floating point ~ Slow Fast Fast Fast
reductions

Safety Maximum Moderate Moderate Low
Expression None Yes Yes Yes
factoring

Expression None No Yes Yes
tree balancing

2.18.5 - O fusi onn

The- O f usi onn option globally controls loop fusion and changes the assertiveness
of the FUSI ON directive. Loop fusion can improve the performance of loops, though
in rare cases it may degrade performance.

The n argument allows you to turn loop fusion on or off and determine where fusion
should occur. It also affects the assertiveness of the FUSI ON directive. Use one of

these values for n;

0 No fusion (ignore all FUSI ON directives and do not attempt to fuse
other loops)

1 Attempt to fuse loops that are marked by the FUSI ON directive.

2 (default)

Attempt to fuse all loops (includes array syntax implied loops),
except those marked with the NOFUSI ON directive.

2186 -Oinlinelib

(Deferred implementation) The- O i nl i nel i b option causes the compiler to
attempt inlining of those Cray scientific library routines that are available for inlining.
For areport of what wasinlined or not, seethe- O nsgs, negnsgs option.

4

For example, x/ y istransformedtox * 1.0/y.

46

This option is off by default.

S-3901-71

Invoking the Cray Fortran Compiler [2]

2.18.7 -O i panand - O i paf r om=source| : sour ce] ...

Inlining is the process of replacing a user procedure call with the procedure definition
itself. This saves subprogram call overhead and may allow better optimization of
theinlined code. If all callswithin aloop are inlined, the loop becomes a candidate
for paralelization.

The - O i pan option specifies automatic inlining. Automatic inlining allows the
compiler to automatically select which functions to inline, depending on the inlining
level n. Each n specifies adifferent set of heuristics. When - O i panisused aone,
the candidates for expansion are all those functions that are present in the input file to
the compile step. If - O i panisused in conjunction with - O i paf r omesource, the
candidates for expansion are those functions present in source. For an explanation of
each lining level, see Table 3.

The compiler supports the following inlining modes through the indicated options:

e Automatic inlining allows the compiler to automatically select which procedures
to inline depending on the selected inlining level.

« Explicit inlining allows you to explicitly indicate which procedures the compiler
should attempt to inline.

« Combined inlining allows you to specify potential targets for inline expansion,
while applying the selected level of inlining heuristics.

Cloning is the duplication of a procedure with modifications to the procedure such
that it will run more efficiently. The original call site to that procedure is replaced
with a call to the duplicate copy.

For example, the compiler will clone a procedure when there are constants in the call
site to that procedure. The new clone will replace the associated dummy argument
with its constant actual argument.

Automatic cloning is enabled at - O pa4 and higher.

The compiler first attemptsto inline acall site. If inlining the call site fails, the
compiler attempts to clone the procedure for the specific call site.

S-3901-71 47

Cray Fortran Reference Manual

When a clone is made, dummy arguments are replaced with associated constant
values throughout the routine. The following example shows cloning in action:

PROGRAM TEST
CALL SAM 3, .TRUE.) ! Call site with constants
END

SUBROUTI NE SAM(I, L)
| NTEGER |
LOG CAL L

IF (L) THEN
PRINT *, |

ENDI F

END

Compiling the previous program with the - O i pa4 option produces the following
program:

PROGRAM TEST
CALL SAMAL(3, .TRUE.) ! This is a call to a clone of SAM
END

I Original Subroutine
SUBROUTI NE SAM I, L)

| NTEGER |

LOd CAL L

IE (L) THEN
PRINT *, |

ENDI F

END

I Cloned subroutine
SUBROUTI NE SAM@L(|, L)

| NTEGER |

LOE CAL L

IF (. TRUE.) THEN ! The optimizer will elimnate this |F test
PRINT *, 3

ENDI F

END

2.18.7.1 Automatic Inlining

48

The- O i pan option allows the compiler to automatically decide which procedures
to consider for inlining. Procedures that are potential targets for inline expansion
include all the procedures within the input file to the compilation. Table 3 explains
what isinlined at each level.

S-3901-71

Invoking the Cray Fortran Compiler [2]

Table 3. Automatic Inlining Specifications

Inlining level

Description

0
1

All inlining is disabled. All inlining compiler directives are ignored.

Directiveinlining. Inlining is attempted for call sites and routines that are under the
control of an inlining compiler directive. See Chapter 4, Using Cray Fortran Directives
on page 81 for more information about inlining directives.

Cdll nest inlining. Inline a call nest to an arbitrary depth as long as the nest does not
exceed some compiler-determined threshold. A call nest can be aleaf routine. The

expansion of the call nest must yield straight-line code (code containing no external

calls) for any expansion to occur.

Constant actual argument inlining. Thisincludeslevels 1 and 2, plus any call site that
contains a constant actual argument. Thisis the default inlining level.

Tiny routine inlining plus cloning. Thisincludeslevels 1, 2, and 3, plus the inlining of
very small routines regardless of where those routines fall in the call graph. The lower
limit threshold is an internal compiler parameter. Also, routine cloning is attempted if
inlining fails at a given call site.

Aggressive interprocedural analysis (IPA). Includeslevels 1, 2, 3, and 4. Additionally,
Global Constant Propagation is performed. Thisis the replacement of variables that are
statically initialized and never modified anywhere in the user program. The variableis
replaced with the constant value in itsinitializer. This applies only to scalar variables.

For Global Constant Propagation to work, the entire executable program must be
presented to the compiler at once, which requires alarge amount of memory and can
significantly increase compile time. If the entire executable is not presented at once,
the optimization fails, and messages are issued that indicate dead ends in the call

graph.

2.18.7.2 Explicit Inlining

S-3901-71

The- Oi paf r omesource| : sour ce] option allows you to explicitly indicate the
procedures to consider for inline expansion. The source arguments identify each
file or directory that contains the routines to consider for inlining. Whenever a call
is encountered in the input program that matches a routine in source, inlining is
attempted for that call site.

Note: Blank spaces are not allowed on either side of the equal sign.

All inlining directives are recognized with explicit inlining. For information about
inlining directives, see Chapter 4, Using Cray Fortran Directives on page 81.

Note that the routinesin source are not actually loaded with the final program. They
are simply templates for the inliner. To have aroutine contained in source loaded with
the program, you must include it in an input file to the compilation.

Use one or more of the objects described in Table 4 in the source argument.

49

Cray Fortran Reference Manual

Table 4. File Types

Fortran source The routines in Fortran source files are candidates for inline
files expansion and must contain error-free code. Source filesthat are
acceptable for inlining are files that have one of the following

extensions

N

Modulefiles

. F

.90
. F90
.95
. F95
.03
. FO3
.08
. FO8
ftn
. FTN

When compiling with - emand - Onodi nl i ne isin

effect, the precompiled module information is written to
modulename. nod. The compiler writes a modulename. nod
file for each module; modulename is created by taking the name
of the module and, if necessary, converting it to uppercase.

dir A directory that contains any of the file types described in this
table.

2.18.7.3 Combined Inlining

50

Combined inlining is invoked by specifying the- O i panand - O i pafronme
options on the command line. This inlining mode will look only in source for
potential targets for expansion, while applying the selected level of inlining heuristics

specified by the- O i pan option.

S-3901-71

Invoking the Cray Fortran Compiler [2]

2.18.8 - O [no] nodi nl i ne

The - O nodi nl i ne option prepares module procedures so they can be inlined
by directing the compiler to create templates for module procedures encountered in
amodule. These templates are attached to file. o or modulename. nod. Thefiles
that contain these inlinable templates can be saved and used later to inline call sites
within a program being compiled.

When - e misin effect, module information is stored in modname. nod. The
compiler writes amodulename. nod file for each module; modulename is created by
taking the name of the module and, if necessary, converting it to uppercase.

The process of inlining module procedures requires only that file. o or
modulename. nod be available during compilation through the typical module
processing mechanism. The USE statement makes the templates available to the
inliner. You do not need to specify the file. o or modulename. nod with the - O
i paf romoption.

When - O nodi nl i ne is specified, the MODI NLI NE and NOMODI NLI NE
directives are recognized. Using the- O nodi nl i ne option increases the size of
file. 0.

To ensure that file. 0 is not removed, specify this option in conjunction with the - ¢
option. For information about the - ¢ option, see - ¢ on page 25.

Default: - O nodi nl i ne

2.18.9 - O [no] nBQS

S-3901-71

The - O nsgs option causes the compiler to write optimization messages to
stderr.

Similar information in a more-readable format can be obtained by using the - r m
option instead. Specifying the - r moption enables- O nsgs. For moreinformation,
see-r list_opt on page 62.

Default: - O nonsgs

51

Cray Fortran Reference Manual

2.18.10 - O [no] negnsgs

The - O negnsgs option causes the compiler to generate messagesto st der r
that indicate why optimizations such as vectorization or inlining did not occur in a
given instance.

The- O negnsgs option enablesthe- O megs option. The - r moption enables the
- O negnsgs option.

Default: - O nonegnsgs

2.18.11 - O noi nt er change

The- O noi nt er change option inhibits the compiler's attempts to interchange
loops. Interchanging loops by having the compiler replace an inner loop with an outer
loop can increase performance. The compiler performs this optimization by default.

Specifying the - O noi nt er change option is equivalent to specifying a

NO NTERCHANGE directive prior to every loop. To disable loop interchange
on individual loops, use the NO NTERCHANGE directive. For more information
about the NO NTERCHANGE directive, see Control Loop Interchange:

[NO | NTERCHANGE on page 106.

2.18.12 - O [no] onp

The - O [no] onp option enables or disables compiler recognition of OpenMP
directives. Using the- O noonp optionissimilar tothe- O t hr eadO option, in
that it disables OpenMP, but unlike - O t hr eadO it does not affect autothreading.
The- O [no] onp optionisidentica tothe- h [no] onp option.

Default: - O onp

2.18.13 - O [no] overi ndex

52

The - O noover i ndex option declares that there are no array subscripts which
index a dimension of an array that are outside the declared bounds of that dimension.
Short loop code generation occurs when the extent does not exceed the maximum
vector length of the machine.

Specifying - O overi ndex declares that the program contains code that makes
array references with subscripts that exceed the defined extents. This prevents the
compiler from performing the short loop optimizations described in the preceding
paragraph.

S-3901-71

Invoking the Cray Fortran Compiler [2]

Overindexing is nonstandard, but it compiles correctly as long as data dependencies
are not hidden from the compiler. This technique collapses loops; that is, it replaces a
loop nest with asingle loop. An example of this practice is as follows:

DI MENSI ON A(20, 20)
DOl =1, N

A(l, 1) =0.0
END DO

Assuming that N equals 400 in the previous example, the compiler might generate
more efficient code than a doubly nested |oop. However, incorrect results can occur in
thiscaseif - O nooveri ndex isin effect.

You do not need to specify - O over i ndex if the overindexed array is a Cray
pointee, has been equivalenced, or if the extent of the overindexed dimension
isdeclared to be 1 or *. In addition, the- O overi ndex option is enabled
automatically for the following extension code, where the number of subscriptsin an
array reference is less than the declared number:

DI MENSI ON A(20, 20)
DOI =1, N
A(l) = 0.0 ! 1-dinension reference;
I 2-di mensi on array
END DO

Note: The- O overi ndex option is used by the compiler for detection of

short loops and subsequent code scheduling. This allows manual overindexing as
described in this section, but it may have a negative performance effect because of
fewer recognized short loops and more restrictive code scheduling. In addition, the
compiler continues to assume, by default, a standard-conforming user program
that does not overindex when doing dependency analysis for other loop nest
optimizations.

Default: - O nooveri ndex

2.18.14 -O [no] pattern

S-3901-71

The- O patt er n option enables pattern matching for library substitution. The
pattern matching feature searches your code for specific code patterns and replaces
them with calls to highly optimized routines.

The - O patt ern option is enabled only for optimization levels- O 2,
- O vect or 2 or higher; there is no way to force pattern matching for lower levels.

Specifying - O nopat t er n disables pattern matching and causes the compiler
to ignore the PATTERN and NOPATTERN directives. For information about
the PATTERN and NOPATTERN directives, see Request Pattern Matching:

[NO PATTERN on page 92.

Default: - O pattern

53

Cray Fortran Reference Manual

2.18.15 - O scal arn

The- O scal ar n option specifies these levels of scalar optimization:

scal ar 0 disables scalar optimization. Characteristics include low compile time
and size.

The- O scal ar 0 option is compatible with - O vect or 0.

scal ar 1 specifies conservative scalar optimization. Characteristics include
moderate compile time and size. Results can differ from the results obtained when
- O scal ar 0 is specified because of operator reassociation. No optimizations
are performed that could create false exceptions.

The- O scal ar 1 option is compatible with- O vect or 0 or- O vect or 1.

scal ar 2 specifies moderate scalar optimization. Characteristics include
moderate compile time and size. Results can differ slightly from the results
obtained when - O scal ar 1 is specified because of possible changesin loop
nest restructuring. Generally, no optimizations are done that could create false
exceptions.

The- O scal ar 2 option is compatible with all vectorization levels.
Thisis the default scalar optimization level.

scal ar 3 specifies aggressive scalar optimization. Characteristics include
potentialy greater compile time and size. Results can differ from the results
obtained when - O scal ar 1 is specified because of possible changesin loop
nest restructuring.

The optimization techniques used can create false exceptions in rare instances.
Analysis that determines whether avariable is used before it is defined is enabled
at this level.

2.18.16 - O shortcircuitn

The- O short ci rcui t noption specify various levels of short circuit evaluation.
Short circuit evaluation is an optimization in which the compiler analyzes al or
part of alogical expression based on the results of a preliminary analysis. When
short circuiting is enabled, the compiler attempts short circuit evaluation of logical
expressionsthat are used in | F statement scalar logical expressions. This evaluation
is performed on the. AND. operator and the. OR. operator.

54

Example 1: Assume the following logical expression:

operandl . AND. operand2

The operand2 need not be evaluated if operandl is false because in that case, the

entire expression evaluates to false. Likewise, if operand? is false, operandl need
not be evaluated.

S-3901-71

Invoking the Cray Fortran Compiler [2]

Example 2: Assume the following logical expression:

operandl . OR operand2

The operand2 need not be evaluated if operandl is true because in that case, the
entire expression evaluates to true. Likewise, if operand2 is true, operandl need
not be evaluated.

The compiler performs short circuit evaluation in a variety of ways, based on the
following command line options:

e -0 shortcircuitO disablesshort circuiting of | F and ELSEI F statement
logical conditions.

e -O shortcircuitl specifiesshort circuiting of | F and ELSEI F logical
conditions only when a PRESENT, ALLOCATED, or ASSOCI ATED intrinsic
procedure is in the condition.

The short circuiting is performed left to right. In other words, the left operand is
evaluated first, and if it determines the value of the operation, the right operand is
not evaluated. The following code segment shows how this option could be used:

SUBROUTI NE SUB(A)
| NTEGER, OPTI ONAL: : A
| F (PRESENT(A) .AND. A==0) THEN

The expression A==0 must not be evaluated if A isnot PRESENT. The short
circuiting performed when - O short ci rcui t 1 isin effect causes the
evaluation of PRESENT(A) first. If that is false, A==0 is not evaluated. If
-O shortcircuitlisin effect, the preceding exampleis equivalent to the
following example:

SUBROUTI NE SUB(A)

| NTEGER, OPTI ONAL: : A

| F (PRESENT(A)) THEN
| F (A==0) THEN

e -0 shortcircuit 2 specifiesshort circuiting of | F and ELSEI F logical
conditions, and it is done left to right. All . AND. and . OR. operatorsin these
expressions are evaluated in this way. The left operand is evaluated, and if it
determines the result of the operation, the right operand is not evaluated.

S-3901-71 55

Cray Fortran Reference Manual

e -0 shortcircuit 3 specifiesshort circuiting of | F and ELSEI F logical
conditions. It is an attempt to avoid making function calls. When thisoptionisin
effect, the left and right operandsto . AND. and . OR. operators are examined
to determine if one or the other contains function calls. If either operand has
functions, short circuit evaluation is performed. The operand that has fewer calls
is evaluated first, and if it determines the result of the operation, the remaining
operand is not evaluated. If both operands have no calls, then no short circuiting
is done. For the following example, theright operand of . OR. is evaluated first.
If A==0 theni f unc() isnot called:

IF (ifunc() == 0 .OR A==0) THEN

-O shortcircuit?2 isthedefault.

2.18.17 - O t hreadn

56

The- O t hr eadn option enables you to control the compilation and optimization of
OpenMP directives and automatic threading, where nisavalue from 0 to 3 with 0
being off and 3 specifying the most aggressive optimization. This option isidentical
tothe- h t hreadn option.

The valid values for n are;

0 No autothreading or OpenMP threading. The- O t hr eadO option
issimilar to- O noonp, but - O noonp disables OpenMP only and
does not affect autothreading.

1 Specifies strict compliance with the OpenMP standard for directive
compilation. Strict compliance is defined as no extra optimizationsin
or around OpenMP constructs. In other words, the compiler performs
only the requested optimizations.

2 OpenMP parallel regions are subjected to some optimizations;
that is, some parallel region expansion. Parallel region expansion
is an optimization that merges two adjacent parallel regionsin
a compilation unit into a single parallel region. Limited loop
restructuring is done on OpenMP partitioned loop. Legal scalar
optimizations are performed across OpenMP constructs.

3 Full optimization: loop restructuring, including modifying iteration
space for static schedules (breaking standard compliance). Reduction
results may not be repeatable.

Default; - O t hr ead?2

S-3901-71

Invoking the Cray Fortran Compiler [2]

2.18.18 -O unrol I n

The - O unr ol | noption globally controls loop unrolling and changes the
assertiveness of the UNROLL directive. By default, the compiler attempts to unroll all
loops, unless the NOUNROLL directive is specified for aloop. Generaly, unrolling
loops increases single processor performance at the cost of increased compile time
and code size.

The n argument allows you to turn loop unrolling on or off and determine where
unrolling should occur. It also affects the assertiveness of the UNRCLL directive.
Use one of these values for n:

0 No unrolling (ignore all UNRCLL directives and do not attempt to
unroll other loops)

1 Honor the UNROLL directive. Attempt to unroll loops if thereis
proof that the loop will benefit.

2 (default)

Attempt to unroll all loops (includes array syntax implied loops),
except those marked with the NOUNROLL directive, if a performance
benefit is expected.

2.18.19 - O vectorn

The- O vect or n option specifies these levels of vectorization:

S-3901-71

- O vect or 0 specifies very conservative vectorization. Characteristics include
low compile time and small compile size.

The - O vect or 0 option is compatible with all scalar optimization levels.
Vector code is generated for most array syntax statements but not for user-coded
loops.

- O vect or 1 specifies conservative vectorization. Characteristics include
moderate compile time and size. Loop nests are restructured if scalar level >
0. Only inner loops are vectorized. No vectorizations that might create false
exceptions are performed.

The- O vect or 1 option is compatible with - O scal ar1, - O scal ar 2,
or-O scal ar 3.

- O vect or 2 specifies moderate vectorization. Characteristics include moderate
compile time and size. Loop nests are restructured.

The- O vect or 2 option iscompatible with- O scal ar 2 or- O scal ar 3.

This is the default vectorization level.

57

Cray Fortran Reference Manual

e -0 vect or 3 specifies aggressive vectorization. Characteristics include
potentialy high compile time and size. Loop nests are restructured.
Vectorizations that might create fal se exceptionsin rare cases may be performed.

The- O vect or 3 option iscompatiblewith- O scal ar 2 or- O scal ar 3.

2.18.20 - O [no] zeroi nc

The- O zer oi nc option causes the compiler to assume that a constant increment
variable (CIV) can be incremented by zero. A CIV isavariable that isincremented
only by aloop invariant value. For example, in aloop with variable J, the statement
J = J + K, whereKcanbeequal to zero, J isaClV.- O zer oi nc can cause less
strength reduction to occur in loops that have variable increments.

Default; - O nozer oi nc

2.19 -0 out file

The- o out_file option overrides the default executable file name, a. out , with the
name specified by the out_file argument.

If the- o out_file option is specified on the command line along with the - ¢ option,
the load step is disabled and the binary file is written to the out_file specified as an
argument to - 0. For more information about the - ¢ option, see - ¢ on page 25.

2.20 -p module sitg] , module site]

The-p module _site option tells the compiler where to look for Fortran modules to
satisfy USE statements. The module_site argument specifies the name of afile or
directory to search for modules. The module_site specified can bea. nod file, . o
(object) file, . a (archive) file, or adirectory.

By default, module files are written to the directory from which the f t n command
was executed. Alternatively, you can usethe - J dir_name option during compilation
to specify an aternate output directory for . mod files only. The compiler will search
for modules stored in the directories you specified using the - J dir_name option for
the current compilation automatically; you do not need to use the - p option explicitly
to make the compiler do this. For more information about the - J dir_name option,
see-J dir_name on page 39.

58 S-3901-71

Invoking the Cray Fortran Compiler [2]

S-3901-71

The search order for satisfying modules references in USE statements is as follows:
1. The current working directory (or - J dir_name directory, if specified).
2. Any directories or files specified with the - p option.
3. Any directories specified with the - | option.
4

. Any directories or files specified with the FTN_MODULE_PATH environment
variable.

When searching within a directory, the compiler first searches the . nod files, then
the. o files, then the . a files, and then the directories, in the order specified.

File name substitution (such as* . 0) is not allowed. If the path name begins with
adash (/), the name is assumed to be an absolute path name. Otherwise, it is
assumed to be a path name relative to the working directory. You can specify multiple
module_site locations with the - p option either by separating them with commas

or by using a separate - p argument for each module_site. Thereis no limit on the
number of - p options you can specify.

Cray provides some modules as part of the Cray Fortran Compiler Programming
Environment. These are referred to as system modules. The system files containing
these modules are searched last.

Example 1: Consider the following command line:

%ftn -p steve.o -p mke.o joe.f

Assume that st eve. o contains amodule called Rock and mi ke. o contains a
module called St one. A referenceto use Rock inj oe. f causesthe compiler to
use Rock from st eve. 0. A referenceto St one inj oe. f causes the compiler
to use St one from i ke. o.

Example 2: The following example specifies binary file mur phy. o and library file
nol ly. a:

% ftn -p murphy.o -p nolly.a prog.f

Example 3: In this example, assume that the following directory structure existsin
your home directory:
pr ogr ans
/ | \
tests one. f two. f

use it.f
Thefollowing moduleisin filepr ogr ans/ one. f , and the compiled version of itis
in progr ans/ one. o:

MODULE one
| NTEGER i
END MODULE

59

Cray Fortran Reference Manual

60

The next moduleisin file pr ogr ans/ t wo. f, and the compiled version of it is
inprograns/two. o:

MODULE t wo
| NTEGER |
END MODULE

The following programisinfilepr ograns/test s/ use_it. f:

PROGRAM denp
USE one
USE t wo

END PROGRAM

To compileuse_i t . f, enter the following command from your home directory,
which contains the subdirectory pr ogr ans:

% ftn -p progranms prograns/tests/use_it.f

Example 4: In the next set of program units, a module is contained within the
first program unit and accessed by more than one program unit. The first file,
pr ogone. f, contains the following code:

MODULE split
| NTEGER k
REAL a

END MODULE

PROGRAM denopr
USE split

| NTEGER j

j 3

k 1

a 2.0

CALL suba(j)
PRINT *, 'j=", j
PRINT *, 'k=", k
PRINT *, 'a=', a
END

S-3901-71

Invoking the Cray Fortran Compiler [2]

2.21 - Q path

S-3901-71

The second file, pr ogt wo. f, contains the following code:

SUBROUTI NE suba(l)
USE split

| NTEGER |

I =4

k =5

CALL subb(I)
RETURN

END

SUBROUTI NE subb(m)
USE split

| NTEGER m

m=6

a=17.0

RETURN

END

Use the following command line to compile the two files with one f t n command
and arelative pathname:

% ftn -p progone. o progone.f progtwo.f

When the - e moption isin effect, you can use the- p module_site option to
specify one or more directories that contain module files rather than specifying every
individual module file name.

The - Qoption specifies the directory that will contain all saved nontemporary files
from this compilation (for example, al . 0 and . nod files). Specific file types
(like . o files) are saved to a different directory if the- b, - J, - 0, or - Soption is
specified.

The following examples use this directory structure:

current _dir

bi n_out nod_out al | _out

The following example saves al nontemporary files (x. o and any . nod files) in the
current directory:

%ftn -b x.o0 -em x.f90

The following example saves all nontemporary filesintheal | _out directory and
X. 0 inthe current directory.

%ftn -Qall_out -em-b x.o0 x.f90

61

Cray Fortran Reference Manual

222 -1

62

The following example saves the x. o fileto the bi n_out and al . nod filesto
theal | _out directory.

%ftn -Qall_out -b bin_out/x.o -emx.f90

The following example savesthe a. out filetotheal | _out and all . nod filesto
the nod_out directory.

%ftn -Qall_out -J nod_out x.f90

list_opt

The-r list_opt option generates alisting. The list_opt argument produces listings
with commonly needed information.

If one or more input files are specified on the compiler command line, the listing is
placed infile. | st .

The arguments for list_opt are shown below.

Note: Optionsa, c,l,mo, s, and x invoketheft nl x command. Option d
provides a decompiled listing. Option e changes the appearance of the listing
produced by f t nl x.

list opt Listing type

-r a Includes all reports in the listing (including source, cross
references, lint, loopmarks, common block, and options used during
compilation).

-r ¢ Listing includes areport of all COMMON blocks and all members of
each common block. It also shows the program units that use the
COVMON blocks.

-r d Decompiles (trandates) the intermediate representation of the

compiler into listings that resemble the format of the source code.
Thisis performed twice, resulting in two output files, at different
points during the optimization process. You can use these filesto
examine the restructuring and optimization changes made by the
compiler, which can lead to insights about changes you can make to
your Fortran source to improve its performance.

The compiler produces two decompilation listing files with these
extensions per specified sourcefile: . opt and . cg. The compiler
generatesthe . opt file after applying most high level loop nest
transformations to the code. The code structure of this listing most
resembles your Fortran code and is readable by most users. In
some cases, because of optimizations, the structure of the loops and
conditionals will be significantly different than the structure in your
source file.

S-3901-71

Invoking the Cray Fortran Compiler [2]

1
3

The. cg file contains amuch lower level of decompilation. It is till
displayed in a Fortran-like format, but is quite close to what will be
produced as assembly output. This version displays the intermediate
text after all vector tranglation and other optimizations have been
performed. An intimate knowledge of the hardware architecture of
the system is helpful to understanding this listing.

The. opt and. cqg files are intended as a tool for performance
analysis, and are not valid Fortran source code. The format and
contents of the files can be expected to change from release to
release.

The following examples show the listings generated when - r d is
applied to this example:

Note: The column of numbersin the left-hand side of the . opt
and . cqg filesrefer to the line number in the Fortran source file.

I Source code, in file example.f:

subroutine exanple(a, b, c)
real a(*), b(*), c(*)

doi = 1,100
a(i) = b(i) * c(i)
enddo
end

Enter the following command:

%ftn -c -rd exanple.f

Thisisthelisting of theexanpl e. opt file after loop optimizations
are performed:

subroutine exanple(a, b, c)
$l nduc01_N = 0

3. 1dir$ ivdep

CoOowWwa kbW

S-3901-71

do
A(1 + $Induc0l_N4) = C(1 + $InducO1l_N4) * B(1 +
$l nduc01_N4)
$I nduc01_N4 = 1 + $Induc0l_M
if ($InducO1l_N4 >= 100) exit

enddo
return
end
-r e Expands included files in the source listing.
This option is off by default.
-r | Lists source code and includes lint style checking. The listing

includes the COVMON block report (seethe-r ¢ option for more
information about the COMVON block report).

63

Cray Fortran Reference Manual

2.23 - R runchk

The - R runchk option lets you specify any of a group of runtime checks for your
program. To specify more than one type of checking, specify consecutive runchk
arguments, such as: - R ab.

64

Produces a source listing with loopmark information. To provide
amore complete report, this option automatically enables the - O
negnsg option to show why loops were not optimized. If you do
not require this information, use the - O nonegneg option on the
same command line.

Loopmark information will not be displayed if the- d B option has
been specified.

Show in thelist file al options used by the compiler at compile time.

Lists source code and messages. Error and warning messages are
interspersed with the source lines. Optimization messages appear
after each program unit. Produces 80-column output by default.

Retainsfile. T after processing rather than deleting it. Thefile. T
can beused to cal f t nl x directly. For more information, see the
ft nl x(1) man page.

Generates a cross-reference listing. Produces 80-column output by
default.

Note: Performance is degraded when runtime checking is enabled. This capability,
though useful for debugging, is not recommended for production runs.

The runtime checks available are as follows;

runchk

a

Checking performed

(Deferred implementation) Compares the number and types of
arguments passed to a procedure with the number and types
expected.

Note: When - R a is specified, some pattern matching may

be lost because some of the library calls typically found in the
generated code may not be present. This occurswhen - R a

is specified in conjunction with one of the following other
options. - O 2 (the default optimization level), - O 3,- O i paz2,
-Oipa3,-Oipador-0ipab.

Enables checking of array bounds. If a problem is detected at run
time, a message is issued but execution continues. The NOBOUNDS
directive overrides this option. For more information about
NOBOUNDS, see Check Array Bounds: [NGO BOUNDS on page 111.

S-3901-71

Invoking the Cray Fortran Compiler [2]

S-3901-71

Note: Bounds checking behavior differs with the optimization
level. At the default optimization level, - O 2, some runtime
checking is inhibited. Complete checking is guaranteed only
when optimization is turned off by specifying- O 0 ontheft n
command line.

Enables conformance checking of array operands in array
expressions. Even without the - R option, such checking is performed
during compilation when the dimensions of array operands can be
determined.

(Deferred implementation) Passes a descriptor for the actual
arguments as an extra argument to the called routine and sets aflag to
signal the called routine that this descriptor isincluded.

Enables directive checking at runtime. Errors detected at compile
time are reported during compilation and so are not reported

at runtime. The col | apse directive is checked, as are the

| oop_i nf o clauses min_trips and max_trips. Violation of a
runtime check resultsin an immediate fatal error diagnostic.

(Deferred implementation) Creates a descriptor for the dummy
arguments at each entry point and tests the flag from the caller to
seeif argument checking should be performed. If theflag is set, the
argument checking is done.

M msgnum| , msgnum ...

(Deferred implementation) Suppresses one or more specific runtime
argument checking messages.

This suboption cannot be specified along with any other - R options.
For example, if you want to specify - Ra and - RM you must specify
them as two separate options to the f t n command, as follows:

ftn -RML640 -Ra otter.f.

You can use a comma to separate multiple message numbers. In
the following example, runtime argument checking is enabled, but
messages 1953 and 1946 are suppressed:

ftn -Ra -RML953, 1946 raccoon. f

(Deferred implementation) Compares the number of arguments
passed to a procedure with the number expected. Does not make
comparisons with regard to argument datatype (see- R a).

65

Cray Fortran Reference Manual

66

p Generates runtime code to check the association or allocation status
of referenced PO NTER variables, ALLOCATABLE arrays, or
assumed-shape arrays. A warning message isissued at run time for
references to disassociated pointers, unallocated allocatable arrays,
or assumed shape dummy arguments that are associated with a
pointer or allocatable actual argument when the actual argument is
not associated or allocated.

s Enables checking of character substring bounds. This option behaves
similarly to option - R b.

Note: Bounds checking behavior differs with the optimization
level. At the default optimization level, - O 2, some runtime
checking is inhibited. Complete checking is guaranteed only
when optimization is turned off by specifying- O 0 ontheft n
command line.

If argument checking isto be done for a particular cal, the calling routine must have
been compiled with either - R a or - R C and the called routine must have been
compiled with either -R aor-R E.-R aisequivalentto - R CE. The separation
of -R ainto- R Cand- R E alows some control over which calls are checked.

Libraries can be compiled with - R E. If the program that is calling the libraries is
compiled with either - R a or - R C, library calls are checked. If the calling routines
are not compiled with- R a or - R C, no checking occurs.

Slight overhead is added to each entry sequence compiled with- R Eor - R a and to
each call site compiled with- R Cor - R a. If acall site passesthe extrainformation
to an entry that is compiled to perform checking, the checking itself costs a few
thousand clock periods per call. This cost depends on the number of arguments at
the call.

Some nonstandard code behaves differently when argument checking is used.
Different behavior can include runtime aborts or changed results. The following
example illustrates this:

CALL SUBI(10, 15)
CALL SUBI(10)
END

SUBROUTI NE SUBL(1, K)
PRINT *,1,K
END

Without argument checking, if the two calls in this example share the same stack
space for arguments, subroutine SUBL prints the values 10 and 15 for both calls.
However, with argument checking enabled, an extra argument is added to the
argument list, overwriting any previous information that was there. In this case, the
second call to SUBL prints 10, followed by an incorrect value.

S-3901-71

Invoking the Cray Fortran Compiler [2]

2.24 -s dze

S-3901-71

If full argument checking isenabled by - R a, a message reporting the mismatch in
the number of argumentsisissued. This problem occurs only with nonstandard code
in which the numbers of actual and dummy arguments do not match.

The-s size option alows you to modify the sizes of variables, literal constants, and
intrinsic function results declared as type REAL, | NTEGER, LOG CAL, COVPLEX,
DOUBLE COVPLEX, or DOUBLE PRECI SI ON. Use one of these for size:

size

Action

byt e_poi nter

defaul t 32

def aul t 64

(Default) Applies a byte scaling factor to integers used in pointer
arithmetic involving Cray pointers. That is, Cray pointers are moved
on byte instead of word boundaries. Pointer arithmetic scaling is
explained in Pointer Scaling Factor on page 69.

(Default) Adjusts the data size of default types as follows:
e 32bits: REAL, | NTEGER, LOGE CAL

* 64 bits: COVPLEX, DOUBLE PRECI SI ON

e 128 bits: DOUBLE COWPLEX

Note: The data sizes of integers and logicals that use explicit kind
and star values are not affected by this option. However, they are
affected by the- e h option. See-d disableand - e enable on

page 25.

Adjust the data size of default types as follows:

* 64 hits: REAL, | NTECER, LOG CAL

64 bits; DOUBLE PRECI SI ON (implied - dp)
e 128 bits: COVWPLEX

e 128 bits; DOUBLE COVPLEX (implied - dp)

If you used the - s def aul t 64 at compile time, you must also
specify this option when invoking the f t n command.

67

Cray Fortran Reference Manual

i nt eger 32

i nt eger 64

real 32

real 64

Note: The data sizes of integers and logical s that use explicit kind
and star values are not affected by this option. However, they are
affected by the - eh option. See- d disableand - e enable on

page 25.

(Default) Adjusts the default data size of default integers and logicals
to 32 hits.

Adjusts the default data size of default integers and logicals to 64
bits.

(Default) Adjusts the default data size of default real types as
follows:

» 32 bits: REAL

e 64 bits: COVPLEX and DOUBLE PRECI SI ON

e 128 bits; DOUBLE COWPLEX

Adjusts the default data size of default real types as follows:
e 64 hits REAL

64 bits: DOUBLE PRECI SI ON (implied - dp)
128 bits: COVPLEX

128 bits: DOUBLE PRECI SI ON (implied - dp)

wor d_poi nt er

Applies aword scaling factor to integers used in pointer arithmetic
involving Cray pointers. That is, Cray pointers are moved on word
instead of byte boundaries. Pointer arithmetic scaling is explained
later in Pointer Scaling Factor on page 69.

The default data size options (for example, - s def aul t 64) option does not
affect the size of data that explicitly declare the size of the data (for example,
REAL(KI ND=4) R

Note: REAL(KI ND=16) and COVPLEX(KI ND=16) are not supported.

2.24.1 Different Default Data Size Options on the Command Line

68

You must be careful when mixing different default data size options on the same
command line because equivalencing data of one default size with data of another
default size can cause unexpected results. For example, assume that the following
command line is used for a program:

%ftn -s default64 -s integer32 ...

S-3901-71

Invoking the Cray Fortran Compiler [2]

The mixture of these default size options causes the program below to equivalence
32-bit integer data with 64-bit real data and to incompletely clear the rea array.

Program t est
I MPLI CI' T NONE

real r

i nteger i

conmon /bl k/ r(10), i(10)
i nteger overlay(10)

equi val ence (overlay, r)

call clear(overl ay)
call clear(i)

cont ai ns
subroutine clear(i)
i nteger, dinension (10) :: i

i =0
end subroutine

end programtest

The above program sets only the first 10 32-bit words of array r to zero. It should
instead set 10 64-bit words to zero.

2.24.2 Pointer Scaling Factor

You can specify that the compiler apply a scaling factor to integers used in pointer
arithmetic involving Cray pointers so that the pointer is moved to the proper word or
byte boundary. For example, the compiler views this code statement:

Cray_ptr = Cray_ptr + integer_val ue

as

Cray_ptr = Cray_ptr + (integer_value * scaling_factor)

The scaling factor is dependent on the size of the default integer and which scaling
option (-s byte_pointer or-s word_poi nt er) isenabled.

Table 5. Scaling Factor in Pointer Arithmetic

Scaling Option

Default Integer Size Scaling Factor

-s byte_pointer
-s word_poi nter

-s word_pointer

32 or 64 bits 1
and-s defaul t 32 enabled 32 bits 4
and-s def aul t 64 enabled 64 bits 8

S-3901-71

69

Cray Fortran Reference Manual

Therefore, when the - s byt e_poi nt er option is enabled, this example
incrementsptr by i bytes:

pointer (ptr, ptee) I Cray pointer
ptr = ptr + i

Whenthe-s word_poi nter and-s def aul t 32 options are enabled, the same
example is viewed by the compiler as:

ptr = ptr + (4*i)

Whenthe-s word_poi nter and-s def aul t 64 options are enabled, the same
example is viewed by the compiler as:

ptr = ptr + (8*i)

2.25 - S agm file

226 -T

The- S asm file option specifies the assembly language output file name. When
- S asgm file is specified on the command line with either the-e Sor-b
bin_obj_fileoptions, the-e Sand-b bin_obj_file options are overridden.

The - T option disables the compiler but displays all options currently in effect.
The Cray Fortran compiler generates information identical to that generated when
the - v option is specified on the command line; when - T is specified, however,
no processing is performed. When this option is specified, output is written to the
standard error file (st derr).

2.27 - U identifier [, identifier] ...

70

The - U identifier [, identifier] ... option undefines variables used for source
preprocessing. This option removes theinitia definition of a predefined macro or sets
auser predefined macro to an undefined state.

The- D identifier [=value] option defines variables used for source preprocessing.
If both - Dand - U are used for the same identifier, in any order, the identifier is
undefined. For more information about the - D option, see - D identifier [=value] on

page 32.

This option isignored unless one of the following conditionsis true:

* The Fortran input source file is specified as either file. F, file. F90, file. F95,
file. FO3, file. FO8, or file. FTN.

e The-e Por-e Zoptionshave been specified.

S-3901-71

Invoking the Cray Fortran Compiler [2]

2.28 -V

2.29 -V

By default, macros are not expanded in Fortran source statements. Use the - F option
to enable macro expansion in Fortran source statements.

For more information about source preprocessing, see Chapter 5, Source
Preprocessing on page 125.

The - v option sends compilation information to the standard error file (st derr).
The information generated indicates the compilation phases as they occur and all
options and arguments being passed to each processing phase.

The - V option displays to the standard error file (st der r) the release version of the
f t n command. Unlike all other command-line options, you can specify this option
without specifying an input file name; that is, specifyingft n - Visvalid.

2.30 - W&" assembler_opt"

The- WA" assembler_opt" option passes assembler_opt directly to the assembler. For
example, - WA" - h" passes the - h option directly the as command, directing it to
enable all pseudos, regardless of location field name. This option is meaningful to
the system only whenf i | e. s isspecified as an input file on the command line. For
more information about assembler options, see the as (1) man page.

2.31 - W " lister_opt"

2.32 -x dirlist

S-3901-71

The- W " lister_opt" option passes lister_opt directly to thef t nl x command. For
example, specifying- W "-o0 cfil e. 0" passestheargument cfi | e. o directly to
thef t nl x command's - o option; thisdirectsf t nl x to override the default output
listing and put the output fileincfi | e. 0. If you specify the - W " lister_opt"
option, you must specify the-r list_opt option. For more information about options,
seethef t nl x man page.

The- x dirlist option disables specified directives or specified classes of directives.
If specifying a multiword directive, either enclose the directive name in quotation
marks or remove the spaces between the words in the directive's name.

71

Cray Fortran Reference Manual

2.33 - X npes

72

For dirlist, enter one of the following arguments:
dirlist Item disabled

al | All compiler directives and OpenMP Fortran directives. For
information about the OpenM P directives see Chapter 6, Using the
OpenMP Fortran API on page 135.

dir All compiler directives.

directive One or more compiler directives or OpenMP Fortran directives. If
specifying more than one, separate them with commas; for example:
- X | NLI NEALVWAYS, "NO SI DE EFFECTS", BOUNDS.

onp All OpenMP Fortran directives.
condi ti onal _onmp

All C$ and! $ conditional compilation lines.

The - X npes option specifies the number of processing elements (PEs) that will be
specified at job launch. The value for npes ranges from 1 through 65535 inclusive.

If - Xis specified, the user must invoke apr un - n npes using the same value for
npes. Otherwise, the generated codeisin error and execution behavior is undefined.

N$PES is a special symbol whose value is equal to the number of PEs available to
your program. When the - X npes option is specified at compile time, the N6PES
constant is replaced by integer value npes.

The N$PES constant can be used only in these situations:
e The- X npesoption is specified on the command line, or

» The value of the expression containing the N$PES constant is not known until run
time (that is, it can only be used in runtime expressions)

One of the uses for the N$PES symbol isillustrated in the following example, which
declares the size of an array within a subroutine to be dependent upon the number
of processors:

SUBROUTI NE WORK
DI MENSI ON A(N$PES)

Using the NSPES symbol in conjunction with the - X npes option alows the
programmer to program the number of PEs into a program in places that do not
accept runtime values. Specifying the number of PES at compile time can also
enhance compiler optimization.

S-3901-71

Invoking the Cray Fortran Compiler [2]

The programmer is responsible for ensuring that all object files are compiled and
linked with the same - X npes value and for running the resulting executable on that
number of PEs. If mixed - X values are used when compiling and linking different
object files, or the number of PES specified at runtime differs from that specified
when compiling and linking, program behavior is undefined.

2.34 - Yphase, dirname

2.35 --

S-3901-71

The - Yphase, dirname option specifies a new directory (dirname) from which the

designated phase should be executed. phase can be one or more of the values shown
in Table 6.

Table 6. - Yphase Definitions

phase System phase Command
0 Compiler ftn
a Assembler as

The- - symbol signifies the end of options. After this symbol, you can specify files
to be processed. This symbol isoptional. It may be useful if your input file names
begin with one or more dash (-) characters.

73

Cray Fortran Reference Manual

2.36 sourcefile] sourcefile. suffix . . .]

The sourcefile] sourcefile. suffix . ..] option namesthe file or files to be processed.
The file suffixes indicate the content of each file and determine whether the
preprocessor, compiler, assembler, or loader will be invoked.

74

Preprocessor

Compiler

Loader

Files having the F, F90, F95, FO3, FO8, or FTN suffix invoke the
Preprocessor.

Fortran source files having the following suffixes invoke the
compiler:

e . f or.F,indicates afixed source form file.

« .f90,.F90,.f95,.F95,.f03,. F03,.f08,.F08,.ftn,
. FTN, indicates a free source form file.

Note: The source form specified on the - f source form
option overrides the source form implied by the file suffixes.

Fileswith a. o extension (object files) invoke the loader. If only one
source file is specified on the command line, the . o fileis created
and deleted. To retain the . o file, use the - ¢ option to disable the
loader.

You can specify object files produced by the Cray Fortran, C, C++,
or assembler compilers. Object files are passed to the loader in the
order in which they appear on the f t n command line. If the loader is
disabled by the - b or - ¢ option, no files are passed to the loader.

S-3901-71

Setting Environment Variables [3]

Environment variables are predefined shell variables, taken from the execution
environment, that determine some of your shell characteristics. Several environment
variables pertain to the Cray Fortran compiler. The Cray Fortran compiler recognizes
general and multiprocessing environment variables.

The multiprocessing variables in the following sections affect the way your program
will perform on multiple processors. Using environment variables lets you tune the
system for parallel processing without rebuilding libraries or other system software.

The variables alow you to control parallel processing at compile time and at run time.
Compile time environment variables apply to all compilationsin a session.

The following examples show how to set an environment variable:

* With the standard shell, enter:

CRAY_FTN_OPTI ONS=options
export CRAY_FTN_OPTI ONS

e With the C shell, enter:
set env CRAY_FTN_OPTI ONS options

The following sections describe the environment variables recognized by the Cray
Fortran compiler.

Note: Many of the environment variables described in this chapter refer to the
default system locations of Programming Environment components. If the Cray
Fortran Compiler Programming Environment has been installed in a non-default
location, see your system support staff for path information.

3.1 Compiler and Library Environment Variables

The variables described in the following subsections alow you to control parallel
processing at compile time.

S-3901-71 75

Cray Fortran Reference Manual

3.1.1 CRAY_FTN_OPTI ONS Environment Variable

The CRAY_FTN_OPTI ONS environment variable specifies additional options to
attach to the command line. This option follows the options specified directly on the
command line. File names cannot appear. These options are inserted at the rightmost
portion of the command line before the input files and binary files are listed. This
alows you to set the environment variable once and have the specified set of options
used in al compilations. Thisis especially useful for adding options to compilations
done with build tools.

For example, assume that this environment variable was set as follows:

setenv CRI _FTN OPTIONS - &0

With the variable set, the following two command line specifications are equivalent:

%ftn -c t.f
%ftn -c -AQ t.f

3.1.2 CRAY_PE_TARCET Environment Variable

The CRAY_PE_TARGET environment variable specifies the target_system for
compilation. The command line option - h cpu=target_system takes precedence
over the CRAY_PE_TARGET setting.

The currently acceptable values for CRAY_PE_TARCET are x86- 64, opt er on,
bar cel ona, shanghai , ori st anbul . At thistimethex86- 64 and opt er on
options produce identical output.

If you are creating executables for use on abar cel ona or shanghai (quad-core)
ori st anbul (six-core) system, you must also have the associated module,

xt pe- bar cel ona, xt pe- shanghai , or xt pe-i st anbul , loaded when
compiling and linking your code. If one of these modules is loaded, the default
target_system changes to the corresponding cpu target.

If thetarget_systemis set to bar cel ona, shanghai , ori st anbul during
compilation of any sourcefile, it must also be set to that same target during linking
and loading.

3.1.3 FORMAT_TYPE_CHECKI NGEnvironment Variable

76

The FORVAT_TYPE_CHECKI NG environment variable specifies various levels of
conformance between the data type of each 1/0 list item and the formatted data edit
descriptor.

When set to RELAXED, the runtime 1/O library enforces limited conformance
between the data type of each 1/0 list item and the formatted data edit descriptor.

S-3901-71

Setting Environment Variables [3]

When set to STRI CT77, the runtime /O library enforces strict FORTRAN 77
conformance between the data type of each 1/0 list item and the formatted data edit
descriptor.

When set to STRI CT90 or STRI CT95, the runtime 1/O library enforces strict
Fortran 90/95 conformance between the data type of each 1/0 list item and the
formatted data edit descriptor.

See the following tables: Table 16, Table 17, Table 18, and Table 19.

3.1.4 FORTRAN MODULE PATHEnvironment Variable

Like the Cray Fortran compiler - p nodul e_si t e command line option, this
environment variable allows you to specify the files or the directory to search for the
modulesto use. The files can be archivefiles, build files (bl d file), or binary files.

The compiler appends the paths specified by the FORTRAN_MODULE _PATH
environment variable to the path specified by the- p nodul e_si t e command
line option.

Since the FORTRAN_MODULE_PATH environment variable can specify multiple files
and directories, a colon separates each path as shown in the following example:

% set FORTRAN_MODULE PATH=' pathl : path2 : path3'

3.1.5 LI STI O PRECI SI ON Environment Variable

The LI STI O_PRECI SI ON environment variable controls the number of digits of
precision printed by list-directed output. The LI STI O_PRECI SI ON environment
variable can be set to FULL or PRECI SI ON.

e FULL prints full precision (default).

e PRECI SI ON prints x or X + 1 decimal digits, where x is value of the
PRECI SI ONintrinsic function for agiven real value. Thisis asmaller number
of digits, which usually ensures that the last decimal digit is accurate to within 1
unit. Thisnumber of digitsisusually insufficient to assure that subsequent input
will restore a bit-identical floating-point value.

3.1.6 NLSPATH Environment Variable

The NLSPATH environment variabl e specifies the message system library catalog
path. This environment variable affects compiler interactions with the message
system. For more information about this environment variable, see cat open(3).

S-3901-71 77

Cray Fortran Reference Manual

3.1.7 NPROCC Environment Variable

The NPROC environment variabl e specifies the maximum number of processes to be
run. Setting NPRCOC to a number other than 1 can speed up a compilation if machine
resources permit.

The effect of NPROC is seen at compilation time, not at execution time. NPROC
requests a number of compilationsto be done in parallel. It affects all the compilers
and also make.

For example, assume that NPRCC is set as follows:

set env NPROC 2
The following command is entered:
ftn -ot main.f sub.f

In this example, the compilations from . f filesto. o filesfor mai n. f and sub. f

happen in parallel, and when both are done, the load step is performed. If NPROCis
unset, or setto 1, mai n. f iscompiled to mai n. o; sub. f iscompiled to sub. o,
and then the link step is performed.

You can set NPROC to any value, but large values can overload the system. For
debugging purposes, NPROC should be set to 1. By default, NPROCis 1.

3.1.8 TMPDI REnvironment Variable

The TMPDI R environment variable specifies the directory containing the compiler
temporary files. The location of the directory is defined by your administrator and
cannot be changed.

3.1.9 ZERO W DTH_PRECI SI ON Environment Variable

The ZERO W DTH_PRECI SI ON environment variable controls the field width
when field width w of Fw. d is zero on output. The ZERO W DTH_PRECI SI ON
environment variable can be set to PRECI SI ON or HALF.

* PRECI Sl ON specifies that full precision will be written. This is the default.

» HALF specifies that half of the full precision will be written.

3.2 OpenMP Environment Variables

For Cray-specific information about OpenMP environment variables, see Chapter
6, Using the OpenMP Fortran APl on page 135. For documentation of standard
OpenMP environment variables, see the OpenMP Application Program Interface
Version 3.0 May 2008 standard (http://openmp.org/wp/openmp-specifications/).

78 S-3901-71

http://openmp.org/wp/openmp-specifications/

Setting Environment Variables [3]

3.3 Run Time Environment Variables

Run time environment variables allow you to adjust the following elements of your
run time environment:

e Stack and heap sizes, see the nenor y(7) man page for more information.

» Default options for automatic apr un, see the CRAY_AUTO_APRUN_OPTI ONS
environment variable in the apr un(1) man page.

e The field width w of Fw. d when w is zero on output, refer to
the ZERO W DTH_PRECI SI ON environment variable in
ZERO_W DTH_PRECI SI ON Environment Variable on page 78.

3.3.1 aprun Resource Limits

S-3901-71

Use the APRUN_XFER LI M TS runtime environment variable to control the
forwarding of apr un user resource limits.

On Cray Linux Environment (CLE) 2.2 systems, this forwarding is disabled
by default (except for RLI M T_CPU and RLI M T_CORE, which are
aways forwarded). To enable forwarding of all other resource limits, set
APRUN XFER LI M TSto 1.

On Cray Linux Environment (CLE) 2.1 systems, this forwarding in enabled by
default, and the apr un command forwards its user resource limits, both soft and hard
(seethegetrlinit (2) man page), to each compute node, where those limits are
set for the application. Cray recommends that this forwarding be disabled, by setting
APRUN_XFER_LI M TSto 0.

79

Cray Fortran Reference Manual

The forwarded limits are:
« RLIMT_CPU
 RLIMT_FSI ZE

* RLIM T_DATA

« RLIMT_STACK

« RLIMT_CORE

* RLIMT_RSS

« RLIMT_NPROC

e RLIMT_NOFILE

e RLIMT_MEM_CCK
e RLIMT_AS

« RLIMT_LOCKS

e RLIM T_SI GPENDI NG
e RLIM T_MSGQUEUE
« RLIMT_NICE

e RLIMT_RTPRI O

This forwarding of user resource limits can cause problems on systems where the
login node's limits are more restrictive than the default compute node limits. For
example, during execution, if your program attempts to exceed the stack size limit,
the message st ack over f | owis printed and a segmentation fault occurs.

If user resource limit forwarding is disabled (APRUN_XFER_LI M TS=0), only the
RLI M T_CORE resource limit is forwarded.

Note: The APRUN_XFER LI M TS environment variable is available on
CLE release 2.1 or later only. On UNICOS/Ic systems, usetheul it -s
unl i m t ed command to increase the stack size limit.

80 S-3901-71

Using Cray Fortran Directives [4]

Directives are lines inserted into source code that specify actions to be performed by
the compiler. They are not Fortran statements.

This chapter describes the Cray Fortran compiler directives. If you specify a directive
while running on a system that does not support that particular directive, the compiler
generates a message and continues with the compilation.

Note: The Cray Fortran compiler aso supports the OpenMP Fortran API
directives. See Chapter 6, Using the OpenM P Fortran API on page 135 for more
information.

Using Directives on page 85 describes how to use the directives and the effects they
have on programs.

Table 7 categorizes the Cray Fortran compiler directives according to purpose and
directs you to the pages containing more details.

Table 7. Directives

Purpose and Name Description
Vectorization:

COPY_ASSUMED_SHAPE Copy arrays to temporary storage. For more information, see
Copy Arraysto Temporary Storage: COPY_ASSUMED SHAPE
on page 90.

HAND TUNED Assert that the loop has been hand-tuned for maximum
performance and restrict automatic compiler optimizations. For
more information, see Limit Optimizations: HAND_TUNED on
page 91.

| VDEP Ignore loop vector-dependencies that aloop might have. For more
information, see Ignore Vector Dependencies. | VDEP on page 91.

NEXTSCALAR Disable loop vectorization. For more information, see Specify
Scalar Processing: NEXTSCALAR on page 92.

[NO PATTERN Replace or do not replace recognized code patterns with
optimized library routines. For more information, see Request
Pattern Matching: [NO| PATTERN on page 92.

S-3901-71 81

Cray Fortran Reference Manual

Purpose and Name

Description

PERMUTATI ON

[NO Pl PELI NE

PREFERVECTOR

PROBABI LI TY

SAFE_ADDRESS

SAFE_CONDI T1 ONAL

LOOP_I NFO

SHORTLOOP[128]

[NOJ UNROLL

[NO| VECTOR

Inlining:

82

[NO| CLONE, RESETCLONE

Declare that an integer array has no repeating values. For more
information, see Declare an Array with No Repeated Values:
PERMUTATI ON on page 93.

Attempt to force or inhibit software-based vector pipelining.
For more information, see Enable or Disable, Temporarily, Soft
Vector-pipelining: [N Pl PELI NE on page 102.

Vectorize nested loops. For more information, see Designate Loop
Nest for Vectorization: PREFERVECTOR on page 94.

Suggest the probability of a branch being executed. For more
information, see Conditional Density: PROBABI LI TY on

page 94.

Speculatively execute memory references within aloop. For
more information, see Allow Speculative Execution of Memory
References within Loops: SAFE_ADDRESS on page 95.

Speculatively execute memory references and arithmetic
operations within aloop. For more information, see Allow
Speculative Execution of Memory References and Arithmetic
Operations: SAFE_CONDI TI ONAL on page 96.

Provide loop count and cache allocation information to the
optimizer to produce faster code sequences. This directive can be
used to override CACHE or CACHE_NT. For more information,
see Provide More Information for Loops: LOOP_I NFO

on page 97 and Autothreading for Loops: LOOP_I NFO
PREFER_[NO| THREAD on page 99.

The SHORTLOOP and SHORTLOOP128 directives are special
cases of LOOP_| NFO and are superseded by the general
LOOP_I NFOdirective. For more information, see Designate
Loops with Low Trip Counts: SHORTLOOP, SHORTLOOP128
on page 97.

Unroll or do not unroll loops to improve performance. For more
information, see Unroll Loops: [NO] UNROLL on page 99.

Vectorize or do not vectorize loops and array statements.
For more information, see Enable and Disable Vectorization:
[NO VECTOR on page 102.

Attempt cloning or do not attempt cloning at call sites, or reset
cloning to the state specified on the command line. For more
information, see Disable or Enable Cloning for a Block of Code:
[NO CLONE and RESETCLONE on page 103.

S-3901-71

Using Cray Fortran Directives [4]

Purpose and Name

Description

[NO I NLI NE, RESETI NLI NE

I NLI NENEVER, | NLI NEALWAYS

[NO| MODI NLI NE

Scalar optimization:
[NO | NTERCHANGE

[NO] COLLAPSE

NCS| DEEFFECTS

SUPPRESS

Local use of compiler features:
[NO BOUNDS

FREE, FI XED

Storage:
BLOCKABLE

BLOCKI NGSI ZE, NOBLOCKI NG

S-3901-71

Attempt to inline or do not attempt to inline call sites, or reset
inlining to the state specified on the command line. For more
information, see Disable or Enable Inlining for a Block of Code:
[NO I NLI NE and RESETI NLI NE on page 104.

Never or adways inline the specified procedures. For
more information, see Specify Inlining for a Procedure:
I NLI NEALWAYS and | NLI NENEVER on page 104.

Enable or disable inlineable templates for the designated
procedures. For more information, see Create Inlinable Templates
for Module Procedures: [NO| MODI NLI NE on page 105.

Control whether or not to interchange the order of the two or more
loops immediately following the directive. For more information,
see Control Loop Interchange: [NO| | NTERCHANGE on

page 106.

Collapse or do not collapse the loop nest immediately following
the directive. For more information, see Control Loop Collapse:
[NO COLLAPSE on page 108.

Tell the compiler that the data in the registers will not change
when calling the specified subprogram. For more information, see
Determine Register Storage: NOSI DEEFFECTS on page 109.

Suppress scalar optimization of specified variables. For more
information, see Suppress Scalar Optimization: SUPPRESS on
page 110.

Check or do not check the bounds of array references. For
more information, see Check Array Bounds. [NO| BOUNDS on
page 111.

Specify that the source uses afree or fixed format. For more
information, see Specify Source Form: FREE and FI XED on
page 113.

Specify that it islegal to cache block subsequent loops. For more
information, see Permit Cache Blocking: BLOCKABLE Directive
on page 113.

Assert that the loop following the directive is or is not involved
in cache blocking. For more information, see Declare Cache
Blocking: BLOCKI NGSI ZE and NOBLOCKI NG Directives on
page 114.

83

Cray Fortran Reference Manual

Purpose and Name

Description

STACK

Miscellaneous;
[NO AUTOTHREAD

CACHE
CACHE_NT
CONCURRENT
[NO| FUSI ON
I D

| GNORE_TKR
NANVE
PREPROCESS
VEAK

Allocate variables on the stack. For more information, see
Request Stack Storage: STACK on page 115.

Turn autothreading on and off for the selected block of
code. For more information, see Control Autothreading:
[NO| AUTOTHREAD on page 116.

Advisory directive to override automatic cache allocation and
keep specified objects in cache. For more information, see
Allocate Cache: CACHE on page 117.

Advisory directive to override automatic cache allocation

and prevent specified objects from being cached. For more
information, see Non-temporal Reads and Writes: CACHE _NT on
page 117.

Convey user-known array dependencies to the compiler. For more
information, see Specify Array Dependencies: CONCURRENT on
page 118.

Fine-tune the selection of the DOloops to be fused. For more
information, see Fuse Loops: [NO| FUSI ON on page 118.

Insert a character string into the file. o object file. For more
information, see Create |dentification String: | D on page 119.

Ignore the type, kind, and rank (TKR) of specified dummy
arguments of a procedure interface. For more information,
see Disregard Dummy Argument Type, Kind, and Rank:

I GNORE_TKR on page 120.

Define a name that uses characters that are outside of the Fortran
character set. See External Name Mapping: NANME on page 121.

Allow an include file to be preprocessed when the compiler
command line does not specify preprocessing. See Preprocess
Include File: PREPROCESS on page 122.

Define a procedure reference as weak. See Specify Weak
Procedure Reference: WEAK on page 122.

84

S-3901-71

Using Cray Fortran Directives [4]

4.1 Using Directives

4.1.1 Directive Lines

S-3901-71

A directive line begins with the characters CDI R$ or ! DI R$. How you specify
directives depends on the source form you are using, as follows:

« |f using fixed source form, indicate a directive line by placing the characters
CDI R$ or ! DI R$ in columns 1 through 5. If the compiler encounters a nonblank
character in column 6, the line is assumed to be a directive continuation line.
Columns 7 and beyond can contain one or more directives. Charactersin
directives entered in columns beyond the default column width are ignored.

« |If using free source form, indicate a directive by the characters! DI R$, followed
by a space, and then one or more directives. If the position following the ! DI R$
contains a character other than a blank, tab, or newline character, the lineis
assumed to be a continuation line. The! DI R$ need not start in column 1, but it
must be the first text on aline.

In the following example, an asterisk (*) appears in column 6 to indicate that the
second line is a continuation of the preceding line:

! DI R$ NOSI DEEFFECTS
! DI R$* ab

The FI XED and FREE directives must appear alone on a directive line and cannot
be continued.

If you want to specify more than one directive on aline, separate each directive with
acomma. Some directives require that you specify one or more arguments; when
specifying a directive of this type, no other directive can appear on the line.

Spaces can precede, follow, or be embedded within a directive, regardless of source
form.

Code portability is maintained despite the use of directives. In the following example,
the! symbol in column 1 causes other compilers to treat the Cray Fortran compiler
directive as a comment:

A=10.

' DI R$ NOVECTOR
DO 10,1 =1, 10...

Do not use source preprocessor (#) directives within multiline compiler directives
(CDI R$ or ! DI R$).

85

Cray Fortran Reference Manual

4.1.2 Range and Placement of Directives

86

The range and placement of directives are as follows:

The FI XED and FREE directives can appear anywhere in your source code. All
other directives must appear within a program unit.

These directives must reside in the declarative portion of a program unit and apply
only to that program unit:

— CACHE
— CACHE_NT

— COPY_ASSUMED_SHAPE

— 1 GNORE_TKR

— I NLI NEALWAYS, | NLI NENEVER, RESETI NLI NE
— NAME

— NOSI DEEFFECTS

— STACK

— PREPROCESS

— VEAK

The following directives toggle a compiler feature on or off at the point at which
the directive appearsin the code. These directives are in effect until the opposite
directive appears, until the directiveis reset, or until the end of the program unit,
at which time the command line settings become the default for the remainder of
the compilation.

— [NO| AUTOTHREAD

— [NO| BOUNDS

— [NO| CLONE, RESETCLONE

— [NO I NLI NE

— [NO| I NTERCHANGE

— [NO| PATTERN

— [NO| VECTOR

The SUPPRESS directive applies at the point at which it appears.

The | D directive does not apply to any particular range of code. It adds
information to the file. o generated from the input program.

S-3901-71

Using Cray Fortran Directives [4]

« Thefollowing directives apply only to the next loop or block of code encountered
lexicaly:

— BLOCKABLE
— BLOCKI NGSI ZE, NOBLOCKI NG

— CONCURRENT

— HAND_TUNED

— [NO | NTERCHANGE

— | VDEP

— NEXTSCALAR

— PERMUTATI ON

— [NQ Pl PELI NE

— PREFERVECTOR

— PROBABI LI TY

— SAFE_ADDRESS

— SAFE_CONDI TI ONAL

— SHORTLOOP[128]

— LOOP_|I NFO

— LOOP_|I NFO PREFER [NO| THREAD
— [NO] UNROLL

e TheMODI NLI NE and NOMODI NLI NE directives are in effect for the scope of the
program unit in which they are specified, including all contained procedures.
If one of these directivesis specified in a contained procedure, the contained
procedure's directive overrides the containing procedure's directive.

4.1.3 Interaction of Directives with the - x Command Line Option

S-3901-71

The - x option on the f t N command accepts one or more directives as arguments.
When your input is compiled, the compiler ignores directives named as arguments
to the - x option. If you specify - x al | , al directives are ignored. If you specify
- x di r, al directives preceded by ! DI R$ or CDI R$ are ignored.

For more information about the - x option, see- x dirlist on page 71.

87

Cray Fortran Reference Manual

4.1.4 Command Line Options and Directives

88

Some features activated by directives can also be specified onthe f t n command line.
A directive applies to parts of programs in which it appears, but a command line
option applies to the entire compilation.

Vectorization, scalar optimization, and tasking can be controlled through both
command line options and directives. If acompiler optimization feature is disabled
by default or is disabled by an argument to the - Ooption to the f t n command, the
associated ! prefix$ directives are ignored. The following list shows Cray Fortran
compiler optimization features, related command line options, and related directives:

Specifying the - O 0 option on the command line disables all optimization. All
scalar optimization and vectorization directives are ignored.

Specifying the - O i pa0 option on the command line disables inlining and
causes the compiler to ignore al inlining directives.

Specifying the- O scal ar 0 option disables scalar optimization and causes the
compiler to ignore all scalar optimization and all vectorization directives.

Specifying the - O noonp option disables OpenMP and causes the compiler
to ignore OpenMP directives.

Specifying the - O t hr ead0 option disables both OpenM P and autothreading
and causes the compiler to ignore OpenM P and autothreading directives.

Specifying the - O vect or 0 option causes the compiler to ignore all
vectorization directives. Specifying the NOVECTOR directive in a program unit
causes the compiler to ignore subsequent directivesin that program unit that may
specify vectorization.

The following sections describe directive syntax and the effects of directives on Cray
Fortran compiler programs.

S-3901-71

Using Cray Fortran Directives [4]

4.2 \ectorization Directives

S-3901-71

This section describes the following directives used to control vectorization:
« COPY_ASSUMED SHAPE

« HAND_TUNED

| VDEP

* NEXTSCALAR

« [NO PATTERN

e PERMUTATI ON

* PREFERVECTOR

* PROBABILITY

+ SAFE_ADDRESS

* SAFE_CONDI TI ONAL

« SHORTLOOP[128]

« LOOP_I NFO

« LOOP_I NFO PREFER [NO| THREAD
« [NO UNROLL

e [NQ VECTOR

« [NJ PI PELI NE

The-0O 0,-0 scal ar0,-0 task0, and- O vect or 0 optionson thef t n
command override these directives.

89

Cray Fortran Reference Manual

4.2.1 Copy Arrays to Temporary Storage: COPY_ASSUMED SHAPE

90

The COPY_ASSUMED_SHAPE directive copies assumed-shape dummy array
arguments into contiguous local temporary storage upon entry to the procedure in
which the directive appears. During execution, it is the temporary storage that is used
when the assumed-shape dummy array argument is referenced or defined. The format
of this directiveis as follows:

I DI R$ COPY_ASSUMED SHAPE [array [, array] ...]

array The name of an array to be copied to temporary storage. If no array
names are specified, all assumed-shape dummy arrays are copied to
temporary contiguous storage upon entry to the procedure. When the
procedure is exited, the arrays in temporary storage are copied back
to the dummy argument arrays. If one or more arrays are specified,
only those arrays specified are copied. The arrays specified must
not have the TARGET attribute.

All arrays specified, or al assumed-shape dummy arrays (if specified
without array arguments), on a single COPY_ASSUMED SHAPE
directive must be shape conformant with each other. Incorrect

code may be generated if the arrays are not. You can use the

- R ¢ command line option to verify whether the arrays are shape
conformant.

The COPY_ASSUMED _SHAPE directive applies only to the program unit in which it
appears.

Assumed-shape dummy array arguments cannot be assumed to be stored in
contiguous storage. In the case of multidimensional arrays, the elements cannot be
assumed to be stored with uniform stride between each element of the array. These
conditions can arise, for example, when an actual array argument associated with an
assumed-shape dummy array is a non-unit strided array slice or section.

If the compiler cannot determine whether an assumed-shape dummy array is stored
contiguously or with a uniform stride between each element, some optimizations
are inhibited in order to ensure that correct code is generated. |f an assumed-shape
dummy array is passed to a procedure and becomes associated with an explicit-shape
dummy array argument, additional copy-in and copy-out operations may occur

at the call site. For multidimensional assumed-shape arrays, some classes of

loop optimizations cannot be performed when an assumed-shape dummy array

is referenced or defined in aloop or an array assignment statement. The lost
optimizations and the additional copy operations performed can significantly
reduce the performance of a procedure that uses assumed-shape dummy arrays
when compared to an equivalent procedure that uses explicit-shape array dummy
arguments.

S-3901-71

Using Cray Fortran Directives [4]

The COPY_ASSUMED _SHAPE directive causes a single copy to occur upon entry
and again on exit. The compiler generates atest at run time to determine whether
the array is contiguous. If the array is contiguous, the array is not copied. This
directive allows the compiler to perform all the optimizations it would otherwise
perform if explicit-shape dummy arrays were used. If there is sufficient work in
the procedure using assumed-shape dummy arrays, the performance improvements
gained by the compiler outweigh the cost of the copy operations upon entry and exit
of the procedure.

4.2.2 Limit Optimizations: HAND_ TUNED

This directive asserts that the code in the loop that follows the directive has been
arranged by hand for maximum performance and the compiler should restrict some
of the more aggressive automatic expression rewrites. The compiler will still fully
optimize and vectorize the loop within the constraints of the directive.

The syntax of this directive is as follows:

' DI R$ HAND_TUNED

Warning: Exercise caution when using this directive and evaluate code
performance before and after using it. The use of this directive may severely impair
performance.

4.2.3 Ignore Vector Dependencies: | VDEP

S-3901-71

When the | VDEP directive appears before a loop, the compiler ignores vector
dependencies, including explicit dependencies, in any attempt to vectorize the loop.
| VDEP appliesto the first DOloop or DO WHI LE loop that follows the directive.
The directive applies to only the first loop that appears after the directive within the
same program unit.

For array operations, Fortran requires that the complete right-hand side (RHS)
expression be evaluated before the assignment to the array or array section on the
left-hand side (LHS). If possible dependencies exist between the RHS expression and
the LHS assignment target, the compiler creates temporary storage to hold the RHS
expression result. If an | VDEP directive appears before an array syntax statement, the
compiler ignores potential dependencies and suppresses the creation and use of array
temporaries for that statement. Using array syntax statements allows you to reference
referencing arrays in a compact manner. Array syntax allows you to use either the
array name, or the array name with a section subscript, to specify actionson al the
elements of an array, or array section, without using DOloops.

91

Cray Fortran Reference Manual

Whether or not | VDEP is used, conditions other than vector dependencies can inhibit
vectorization. The format of this directive is as follows:

IDIR$ | VDEP [SAFEVL=vien |
| NFI NI TEVL]

vien Specifies a vector length in which no dependency will occur. vien
must be an integer between 1 and 1024 inclusive.

I NFI NI TEVL Specifies an infinite safe vector length. That is, no dependency will
occur at any vector length.

If no vector length is specified, the vector length used isinfinity.

If aloop with an | VDEP directive is enclosed within another loop with an | VDEP
directive, the | VDEP directive on the outer loop is ignored.

When the Cray Fortran compiler vectorizes aloop, it may reorder the statements
in the source code to remove vector dependencies. When | VDEP is specified,
the statements in the loop or array syntax statement are assumed to contain no
dependencies as written, and the Cray Fortran compiler does not reorder |oop
statements.

4.2.4 Specify Scalar Processing: NEXTSCALAR

The NEXTSCALAR directive disables vectorization for the first DO loop or

DO VHI LE loop that follows the directive. The directive applies to only one
loop, the first loop that appears after the directive within the same program unit.
NEXTSCALAR isignored if vectorization has been disabled. The format of this
directiveis as follows:

I DI R$ NEXTSCALAR

If the NEXTSCALAR directive appears prior to any array syntax statement, it disables
vectorization for the array syntax statement.

4.2.5 Request Pattern Matching: [NO PATTERN

92

By default, the compiler detects coding patterns in source code sequences and
replaces these sequences with calls to optimized library routines. In most cases,
this replacement improves performance. There are cases, however, in which this
substitution degrades performance. This can occur, for example, in loops with very
low trip counts. In such a case, you can use the NOPATTERN directive to disable
pattern matching and cause the compiler to generate inline code. The formats of
these directives are as follows:

I DI R$ PATTERN

! DI R$ NOPATTERN

S-3901-71

Using Cray Fortran Directives [4]

When! DI R$ NOPATTERN has been encountered, pattern matching is suspended
for the remainder of the program unit or until a! DI RS PATTERN directiveis
encountered. When the - O nopat t er n command line option (default) isin
effect, the PATTERN and NOPATTERN compiler directives are ignored. For more
information about - O nopat t ern, see- O [no] pat t er n on page 53.

The PATTERN and NOPATTERN directives should be specified before the beginning
of a pattern.

Example: By default, the compiler would detect that the following loop is a matrix
multiply and replace it with a call to a matrix multiply library routine. By preceding
the loop with a! DI RS NOPATTERN directive, however, pattern matching is
inhibited and no replacement is done.

! DI R$ NOPATTERN

i) = A(iLj) + B(iL k) Ok,)
END DO

END DO

END DO

4.2.6 Declare an Array with No Repeated Values: PERMUTATI ON

S-3901-71

The! DI R$ PERMUTATI ON directive declares that an integer array has no repeated
values. Thisdirective is useful when the integer array is used as a subscript for
another array (vector-valued subscript). When this directive precedes a loop to be
vectorized, it may cause more efficient code to be generated.

The format for this directive is as follows:

! DIR$ PERMUTATION (ia [, ia] ...)
ia Integer array that has no repeated values for the entire routine.

When an array with a vector-valued subscript appears on the left side of the equal
sign in aloop, many-to-one assignment is possible. Many-to-one assignment occurs if
any repeated elements exist in the subscripting array. If it is known that the integer
array is used merely to permute the elements of the subscripted array, it can often be
determined that many-to-one assignment does not exist with that array reference.

Sometimes a vector-valued subscript is used as a means of indirect addressing
because the elements of interest in an array are sparsely distributed; in this case, an
integer array is used to select only the desired elements, and no repeated elements
exist in the integer array, asin the following example:

I DI R$ PERMUTATI ON(I PNT) ! I PNT has no repeated val ues
DOI =1, N
ACIPNT(1)) = B(l) + C(1)
END DO

93

Cray Fortran Reference Manual

4.2.7 Designate Loop Nest for Vectorization: PREFERVECTOR

For cases in which the compiler could vectorize more than one loop, the
PREFERVECTOR directive indicates that the loop following the directive should
be vectorized.

This directive can be used if there is more than one loop in the nest that could be
vectorized. The format of this directiveis as follows:

! DI R$ PREFERVECTOR

In the following example, both loops can be vectorized, but the compiler generates
vector code for the outer DO | loop. Note that the DO | loop is vectorized even
though the inner DO J loop was specified with an | VDEP directive:

! DI R$ PREFERVECTOR

DOl =1, N
I DI R$ | VDEP
DOJ =1, M
A1) = A1) + B(J, 1)
END DO
END DO

4.2.8 Conditional Density: PROBABI LI TY

94

This directive is used to guide inlining decisions, branch elimination optimizations,
branch hint marking, and the choice of the optimal algorithmic approach to the
vectorization of conditional code. The information specified by this directive is used
by interprocedural analysis and the optimizer to produce faster code sequences.

This directive can appear anywhere executable code is legal, and the syntax of this
directive takes one of three forms.

! DI R$ PROBABI LI TY const
! DI R PROBABI LI TY_ALMOST_ALWAYS
! DI R$ PROBABI LI TY_ALMOST_NEVER

Where const is an expression between 0. 0 (never) and 1. 0 (always) that evaluates
to afloating point constant at compilation time.

The specified probability is a hint, rather than a statement of fact. The directive
applies to the block of code where it appears. It isimportant to realize that the
directive should not be applied to a conditional test directly; rather, it should be used
to indicate the relative probability of a THEN or EL SE branch being executed. For
example:

IF (AC(l) > B(l)) THEN
! DIR$ PROBABILITY 0.3

A(l) = B(1)
ENDI F

S-3901-71

Using Cray Fortran Directives [4]

DOl = 1,N

This example states that the probability of entering the block of code with the
assignment statement is 0.3, or 30%. In turn, thismeansthat a(i) is expected to be
greater than b(i) 30% of the time as well.

For vector | F code, a probability of very low (< 0.1) or

probabi lity_al nost _never will cause the compiler to use the vector
gather/scatter methods used for sparse | F vector code instead of the vector merge
methods used for denser | F code. For example:

IF (A(l) >0.0) THEN
| DI R$ PROBABI LI TY_ALMOST_NEVER

B(I) =
ENDI F
ENDDO

B(1)/A(1) + A(1)/B(l) ! EVALUATE USI NG SPARSE METHODS

Note that the PROBABI LI TY directive appears within the conditional, rather than
before the condition. This removes some of the ambiguity of tying the directive
directly to the conditional test.

4.2.9 Allow Speculative Execution of Memory References within Loops:

SAFE_ADDRESS

S-3901-71

(Deferred implementation) The SAFE_ADDRESS directive allows you to tell
the compiler that it is safe to speculatively execute memory references within
all conditional branches of aloop. In other words, you know that these memory
references can be safely executed in each iteration of the loop.

For most code, the SAFE_ ADDRESS directive can improve performance significantly
by preloading vector expressions. However, most loops do not require this directive
to have preloading performed. The directive is only regquired when the safety of the
operation cannot be determined or index expressions are very complicated.

The SAFE_ADDRESS directive is an advisory directive. That is, the compiler may
override the directive if it determines the directive is not beneficial.

If you do not use the directive on aloop and the compiler determines that it would
benefit from the directive, it issues amessage indicating such. The messageis similar
to this:

DOI =1,N

FTN-6375 FTN_DRI VER EXE: VECTOR X7, FILE = 10928.F, LINE = 110
A LOOP STARTI NG AT LINE 110 WOULD BENEFI T FROM "! DI R$ SAFE_ADDRESS".

If you use the directive on aloop and the compiler determines that it does not benefit
from the directive, it issues a message that states the directive is superfluous and
can be removed.

To see the messages you must use the - O nsgs option.

95

Cray Fortran Reference Manual

Incorrect use of the directive can result in segmentation faults, bus errors, or excessive
page faulting. However, it should not result in incorrect answers. Incorrect usage can
result in very severe performance degradations or program aborts.

Thisisthe syntax of the SAFE_ADDRESS directive:
! DI R$ SAFE_ADDRESS

In the example below, the compiler will not preload vector expressions, because the
value of j isunknown. However, if you know that referencesto b(i , j) aresafe
to evauate for al iterations of the loop, regardless of the condition, we can use the
SAFE_ADDRESS directive for this loop as shown below:

SUBROUTINE X3(A, B, N, M J)
REAL A(N), B(N, M

! DI R$ SAFE_ADDRESS

DOl = 1,64 ! VECTORI ZED LOOP
IF (A(1).NE.0.0) THEN
B(1,J) = 0.0 | VALUE OF 'J' |'S UNKNOWN
ENDI F
ENDDO
END

With the directive, the compiler canload b(i , j) with afull vector mask, merge
0. 0 where the condition is true, and store the resulting vector using afull mask.

4.2.10 Allow Speculative Execution of Memory References and
Arithmetic Operations: SAFE_CONDI TI ONAL

96

The SAFE_CONDI T1 ONAL directive expands upon the SAFE_ADDRESS directive.
It implies SAFE_ADDRESS and further specifies that arithmetic operations are safe,
as well as memory operations.

This directive applies to scalar and vector loop nests. It can improve performance by
allowing the hoisting of invariant expressions from conditional code and allowing
prefetching of memory references.

The SAFE_CONDI T1 ONAL directive is an advisory directive. The compiler may
override the directive if it determines that the directive is not beneficial.

Caution: Incorrect use of the directive may result in segmentation faults, bus
errors, excessive page faulting, or arithmetic aborts. However, it should not result
inincorrect answers. Incorrect usage may result in severe performance degradation
or program aborts.

The syntax of this directive is as follows:

' DI R$ SAFE_CONDI Tl ONAL

S-3901-71

Using Cray Fortran Directives [4]

In the example below, the compiler cannot precompute the invariant expression
s1* s2 because these values are unknown and may cause an arithmetic trap if
executed unconditionally. However, if you know that the condition is true at least
once, then it is safe to use the SAFE_CONDI Tl ONAL directive and execute s1* s2
speculatively.

SUBROUTI NE SAFE_COND(A, N, S1, S2)
REAL A(N), S1, S2

I DI RS SAFE_CONDI Tl ONAL
DOI = 1,N
IF (A(1) /=0.0) THEN
ACl) = A(l) + S1*S2
ENDI F
ENDDO
END

With the directive, the compiler evaluates s1* s2 outside of the loop, rather than
under control of the conditional code. In addition, all control flow is removed from
the body of the vector loop as s1* s2 no longer poses a safety risk.

4.2.11 Designate Loops with Low Trip Counts: SHORTLOOP,

SHORTLOOP128

The SHORTLOOP and SHORTLOOP128 directives are special cases of LOOP_| NFO
that have been superseded by the generalized LOOP_I NFOdirective. The
SHORTLOOP and SHORTLOOP128 directives are equivalent, respectively, to:

! DIR$ LOOP_INFO M N_TRI PS(1) MAX_TRI PS(64)
! DIR$ LOOP_INFO M N_TRI PS(1) MAX_TRI PS(128)

The meaning of SHORTLOOP and SHORTLOOP128 can be modified by using the
- eL option. If enabled, this option changes the lower bound to allow zero-trip loops.
For more information about the - eL option, see- d disableand - e enable on

page 25.

4.2.12 Provide More Information for Loops: LOOP_I NFO

S-3901-71

The LOOP_I NFOdirective allows additional information to be specified about the
behavior of aloop, including runtime trip count and hints on cache allocation strategy.

With respect to the trip count information, the LOOP_| NFOdirective is similar to the
SHORTLOOP or SHORTLOOP128 directive but provides more information to the
optimizer and can produce faster code sequences. LOOP_| NFOis used immediately
before a DOor WHI LE loop with alow or known trip count, to indicate the minimum,
maximum, or estimated trip count. The compiler will diagnose misuse at compile
time (when able) or under option - Rd at run time.

97

Cray Fortran Reference Manual

For cache allocation hints, the LOOP_| NFO directive can be used to override
default settings, CACHE, or CACHE_NT directives, or to override automatic cache
management decisions. The cache hints are local and apply only to the specified
loop nest.

The syntax of the LOOP_I NFOdirectiveis as follows:
IDIR$ LOOP_INFO [min_trips(c)] [est_trips(c)] [max_trips(c)]

[cache(symbol [, symbol ...])]
[cache_nt (symbol [, symbol ...])]
[prefetch J[noprefetch]
Where:
C An expression that evaluates to an integer constant
at compilation time.
mn_ trips Specifies the guaranteed minimum number of trips.
est_trips Specifies the estimated or average number of trips.
max_trips Specifies the guaranteed maximum number of trips.
cache Specifies that symbol isto be allocated in cache.
Thisis the default if no hint is specified and the
cache_nt directiveis not specified.
cache_nt Specifies that symbol is to use non-temporal reads
and writes.
symbol The base name of the abject that should (cache) or
should not (cache_nt) be placed into cache. This
can be the base name of any object such as an array
or scalar structure without member references. If
you specify a pointer in the list, only the references,
not the pointer itself, are subject to the cache or
cache_nt instruction.
prefetch Specifies a preference that prefetches be performed
for the following loop.
nopr ef et ch Specifies a preference that no prefetches be

performed for the following loop.

Thepr ef et ch and nopr ef et ch options are deferred.

98 S-3901-71

Using Cray Fortran Directives [4]

(Deferred implementation) The pr ef et ch clause instructs the compiler to preload
scalar data into the first-level cache to improve the frequency of cache hits and lower
latency. They are generated in situations where the compiler expects them to improve
performance. Strategic use of pr ef et ch instructions can hide latency for scalar
loads feeding vector instructions or scalar loads in purely scalar loops. Pr ef et ch
instructions are generated at default and higher levels of optimization. Thus, they
are turned off at -O0 or -O1. Pr ef et ch can be turned off at the loop level viathe
following directive:

! DI R$ LOOP_I NFO NOPREFETCH
DOI =1, N

4.2.13 Autothreading for Loops: LOOP_I NFO PREFER [NO THREAD

The PREFER_THREAD and PREFER _NOTHREAD directives are specia cases of
the LOOP_I NFOadvisory directive. Use these directives to indicate a preference
for turning threading on or off for the subsequent loop. Use the LOOP_I NFO
PREFER_THREAD directive to indicate your preference that the loop following the
directive be threaded. Use the LOOP_| NFO PREFER NOTHREAD directive to
indicate that the loop should not be threaded.

The format of these directivesis:

! DI R$ LOOP_I NFO PREFER_THREAD
DOl =1, N

! DI R$ LOOP_I NFO PREFER_NOTHREAD
DOJ =1, N

4.2.14 Unroll Loops: [NO UNROLL

Loop unrolling can improve program performance by revealing cross-iteration
memory optimization opportunities such as read-after-write and read-after-read. The
effects of loop unrolling also include:

« Improved loop scheduling by increasing basic block size
* Reduced loop overhead

» Improved chances for cache hits

S-3901-71 99

Cray Fortran Reference Manual

100

The formats of these directives are as follows:

IDIR$ UNROLL [n]
I DI R$ NOUNROLL

n Specifies the total number of loop body copiesto be generated. nis
an integer value from O through 1024.

If you specify avalue for n, the compiler unrolls the loop by that
amount. If you do not specify n, the compiler determinesiif it is
appropriate to unroll the loop, and if so, the unroll amount.

The subsequent DOloop is not unrolled if you specify UNROLLO,
UNROLL1, or NOUNRCLL. These directives are equivalent.

The UNROLL directive should be placed immediately before the DO statement of
the loop that should be unrolled.

Note: The compiler cannot always safely unroll non-innermost loops due to data
dependencies. In these cases, the directive isignored (see Example 1).

The UNROLL directive can be used only on loops whose iteration counts can be
calculated before entering the loop. If UNROLL is specified on aloop that is not the
innermost loop in aloop nest, the inner loops must be nested perfectly. That is, at
each nest level, there is only one loop and only the innermost loop contains work.

The NOUNRCLL directive inhibits loop unrolling.

Note: Loop unrolling occurs for both vector and scalar loops automatically. It
is usually not necessary to use the unrolling directives. The UNROLL directive
should be limited to non-inner loops such as Example 1 in which unroll-and-jam
conditions can occur. Such loop unrolling is associated with compiler message
6005. Using the UNROLL directive for inner loops may be detrimenta to
performance and is not recommended. Typically, loop unrolling occursin both
vector and scalar loops without need of the UNROLL directive.

Example 1. Unrolling outer loops

Assume that the outer loop of the following nest will be unrolled by two:

I DIR$ UNROLL 2
DOl =1, 10
DO J = 1,100
A1) = B(J, 1) +1
END DO
END DO

S-3901-71

Using Cray Fortran Directives [4]

S-3901-71

With outer loop unrolling, the compiler produces the following nest, in which the two
bodies of the inner loop are adjacent to each other:

DOl =1, 10, 2
DO J = 1,100
A(J, 1) =B(J,1) +1
END DO
DO J = 1,100
A(J,I+1) = B(J,1+1) + 1
END DO
END DO

The compiler jams, or fuses, the inner two loop bodies together, producing the
following nest:

DOl =1, 10, 2
DO J = 1,100
A(J, 1) =B(J, 1) +1
A(J, 1+1) = B(J,1+1) + 1
END DO
END DO

Example 2. lllegal unrolling of outer loops

Outer loop unrolling is not always legal because the transformation can change the
semantics of the original program. For example, unrolling the following loop nest
on the outer loop would change the program semantics because of the dependency
between A(. ..,) andA(. .., +1):
!DIR$ UNROLL 2
DOI =1, 10
DO J = 1,100
A(J, 1) = A(J-1,1+1) + 1
END DO
END DO

Example 3. Unrolling nearest neighbor pattern

The following example shows unrolling with nearest neighbor pattern. This allows
register reuse and reduces memory references from 2 per trip to 1.5 per trip.

IDIR$ UNROLL 2

DOJ = 1,N
DO = 1,N | VECTORI ZE
ACL,J) = B(1,J3) + B(I,J+1)
ENDDO
ENDDO

The preceding code fragment is converted to the following code:

DOJ = 1,N 2 | UNROLLED FOR REUSE OF B(I, J+1)
DOl = 1,N | VECTORI ZED
AC1,J3) = B(1,J3) + B(I,J+1)
A(l,J+1) = B(I,J+1) + B(I,J+2)
END DO
END DO

101

Cray Fortran Reference Manual

4.2.15 Enable and Disable Vectorization: [NO VECTOR

4.2.1
[NG

102

6
P

The NOVECTOR directive suppresses compiler attempts to vectorize loops and
array syntax statements. NOVECTOR takes effect at the beginning of the next loop
and applies to the rest of the program unit unlessit is superseded by a VECTOR
directive. These directives are ignored if vectorization or scalar optimization have
been disabled. The formats of these directives are as follows:

I'DIR$ VECTOR
! DI R$ NOVECTOR

When ! DI R$ NOVECTOR has been used within the same program unit,

I'Dl R$ VECTOR causes the compiler to resume its attempts to vectorize loops
and array syntax statements. After a VECTOR directive is specified, automatic
vectorization is enabled for all loop nests.

The VECTOR directive affects subsequent loops. The NOVECTOR directive also
affects subsequent loops, but if it is specified within the body of aloop, it affects the
loop in which it is contained and all subsequent loops.

Enable or Disable, Temporarily, Soft Vector-pipelining:

| PELI NE

Software-based vector pipelining (software vector pipelining) provides additional
optimization beyond the normal hardware-based vector pipelining. In software vector
pipelining, the compiler analyzes all vector loops and will automatically attempt to
pipeline aloop if doing so can be expected to produce a significant performance gain.
This optimization also performs any necessary loop unrolling.

In some cases the compiler will either not pipeline aloop that could be pipelined, or
pipeline aloop without producing performance gains. In these cases, you can use the
Pl PELI NE or NOPI PELI NE directives to advise the compiler to pipeline or not
pipeline the loop immediately following the directive.

The format of the pipelining directivesis as follows:

I DI R$ Pl PELI NE

I DI R$ NOPI PELI NE

Software vector pipelining isvalid only for the innermost loop of aloop nest.

The PI PELI NE and NOPI PELI NE directives are advisory only. While you can
use the NOPI PELI NE directive to inhibit automatic pipelining, and you can use the
Pl PELI NE directive to attempt to override the compiler's decision not to pipeline a
loop, you cannot force the compiler to pipeline aloop that cannot be pipelined.

Vector loops that have been pipelined generate compile-time messages to that effect,
if optimization messaging is enabled (- O nsgs).

S-3901-71

Using Cray Fortran Directives [4]

4.3 Inlining Directives

The inlining directives allow you to specify whether the compiler should attempt to
inline certain subprograms or procedures. These are the inlining directives:

« [NO CLONE, RESETCLONE

e [NQ I NLI NE, RESETI NLI NE

e | NLI NEALVWAYS, | NLI NENEVER

« [NO MODI NLI NE

These directives work in conjunction with the following command line options:

e -Oipanand-O ipafrom describedin-O i panand - O
i paf romesource] : sour ce] ... on page 47.

e -0 nodinlineand-0O nonodi nline, describedin- O [no] modi nl i ne
on page 51.

The following subsections describe the inlining directives.

4.3.1 Disable or Enable Cloning for a Block of Code: [NO CLONE and
RESETCLONE

The CLONE and NOCL ONE directives control whether cloning is attempted over a
range of code. If ! DI R$ CLONE isin effect, cloning is attempted at call sites.

If I DI R NOCLONE isin effect, cloning is not attempted at call sites. The
RESETCL ONE resets cloning to the state specified on the compiler command line.

The formats of these directives are as follows:

DI R$ CLONE
! DI R$ NOCLONE
I DI R$ RESETCLONE

One of these directives remains in effect until the opposite directive is encountered,
until the end of the program unit, or until the RESETCLONE directive is encountered.
These directives are recognized when cloning is enabled on the command line

(- O cl onel). Thesedirectivesareignored if the- O i pa0 optionisin effect.

S-3901-71 103

Cray Fortran Reference Manual

4.3.2 Disable or Enable Inlining for a Block of Code: [NO | NLI NE and

RESETI NLI NE

Thel NLI NE, NO NLI NE, and RESETI NLI NE directives control whether inlining is
attempted over arange of code. If ! DI R$ | NLI NE isin effect, inlining is attempted
at call sites. If ! DI RS NO NLI NE isin effect, inlining is not attempted at call

sites. After either directiveisused, ! DI R$ RESETI NLI NE can be used to return
inlining to the state specified on the compiler command line. These are the formats
of these directives:

IDIR$ | NLI NE
I'DIR$ NO NLI NE
I DI R$ RESETI NLI NE

Thel NLI NE and NO NLI NE directives remain in effect until the opposite directive
is encountered, until the RESETI NLI NE directive is encountered, or until the end of
the program unit. These directives areignored if - O i pa0 isin effect.

4.3.3 Specify Inlining for a Procedure: | NLI NEALWAYS and | NLI NENEVER

104

The | NLI NEALWAYS directive forces attempted inlining of specified procedures.
The | NLI NENEVER directive suppresses inlining of specified procedures. The
formats of these directives are as follows:

' DIR$ | NLI NEALWAYS name [, name] ...

I DIR$ | NLI NENEVER name [, name] ...

where name is the name of a procedure.

The following rules determine the scope of these directives:

« A!DR$ | NLI NENEVER directive suppresses inlining for name. That is, if
I'DI R$ | NLI NENEVER b appearsin routine b, no cal to b, within the entire
program, isinlined. If ! DI R$ | NLI NENEVER b appearsin aroutine other than
b, no call to b from within that routine is inlined.

* A!D R$ | NLI NEALWAYS directive specifies that inlining should always
be attempted for name. That is, if ! DI R$ | NLI NEALWAYS c appearsin
routine ¢, inlining is attempted for all callsto ¢, throughout the entire program.
If I DI R$ | NLI NEALWAYS c appearsin aroutine other than c, inlining is
attempted for al callsto ¢ from within that routine.

An error message isissued if | NLI NENEVER and | NLI NEALWAYS are specified for
the same procedure in the same program unit.

S-3901-71

Using Cray Fortran Directives [4]

Example: The following fileis compiled with- O i pal:

SUBROUTI NE S()
IDIRS | NLINEALWAYS S | THI'S SAYS ATTEMPT
I INLINING OF S AT ALL CALLS.

END SUBROUTI NE

SUBROUTI NE T
IDIRS INLINENEVER S | DO NOT INLINE ANY CALLS TO S
I I'N SUBROUTI NE T.
CALL ()

END SUBROUTI NE
SUBRQOUTI NE V

I'DIR$ NO NLI NE I HAS HI GHER PRECEDENCE THAN | NLI NEALWAYS.
CALL S() I DO NOT INLINE THIS CALL TO S.

IDIR$ | NLI NE
CALL S() I ATTEMPT INLINING OF THIS CALL TO S.

END SUBROUTI NE

SUBROUTI NE W
CALL S() I ATTEMPT INLINING OF THIS CALL TO S.

END SUBROUTI NE

4.3.4 Create Inlinable Templates for Module Procedures: [NO MODI NLI NE

S-3901-71

The MODI NLI NE and NOMODI NLI NE directives enable and disable the creation of
inlinable templates for specific module procedures. The formats of these directives
are as follows:

! DI R$ MODI NLI NE
I DI R$ NOMODI NLI NE

Note: The MODI NLI NE and NOMODI NLI NE directives are ignored if
- O nonodi nl i ne is specified onthef t n command line.

These directives are in effect for the scope of the program unit in which they are
specified, including al contained procedures. If one of these directivesis specified in
a contained procedure, the contained procedure's directive overrides the containing
procedure's directive.

The compiler generates a message if these directives are specified outside of amodule
and ignores the directive.

To inline module procedures, the module being used associated must have been
compiled with - O nodi nl i ne.

105

Cray Fortran Reference Manual

Example:

MODULE BEGQ N

CONTAI NS
SUBROUTI NE S() !
IDIRS NOVODI NLI NE

CONTAI NS
SUBROUTI NE I NSI DE_S() !

END SUBROUTI NE | NSI DE_S
END SUBROUTI NE S
SUBROUTI NE T() !

CONTAI NS
SUBROUTI NE | NSI DE_T() !

END SUBROUTI NE | NSI DE_T
SUBROUTI NE MORE_| NSI DE_T
| DI R$ NOVODI NLI NE

Uses

Uses

Uses

Uses

END SUBROUTI NE MORE_I NSI DE_T

END SUBROUTI NE T
END MODULE BEG N

SUBROUTI NE S's

SUBRQUTI NE S' s

MODULE BEG N s

MODULE BEG N s

In the preceding example, the subroutines are affected as follows:

DI R$

! DI R$

DI R$

DI R$

e Inlining templates are not produced for S, | NSI DE_S, or MORE_| NSI DE_T.

e Inlining templates are produced for T and | NSI DE_T.

4.4 Scalar Optimization Directives

The following directives control aspects of scalar optimization:

« [NO | NTERCHANGE
« [NO| COLLAPSE

- NOSI DEEFFECTS

.« SUPPRESS

The following subsections describe these directives.

4.4.1 Control Loop Interchange: [NO| | NTERCHANGE

The loop interchange control directives specify whether or not the order of the
following two or more loops should be interchanged. These directives apply to the

106

loops that they immediately precede.

S-3901-71

Using Cray Fortran Directives [4]

S-3901-71

The formats of these directives are as follows:

I DI R$ | NTERCHANGE (do_variablel, do_variable2 [, do_variable3] . . .)
I DI R$ NO NTERCHANGE
do variable

Specifies two or more do_variable names. The do_variable names
can be specified in any order, and the compiler reorders the loops.
The loops must be perfectly nested. If the loops are not perfectly
nested, you may receive unexpected results.

The compiler reorders the loops such that the loop with do_variablel is outermost,
then loop do_variable2, then loop do_variable3.

The NO NTERCHANGE directive inhibits loop interchange on the loop that
immediately follows the directive.

Example: The following code has an | NTERCHANGE directive:

IDIR$ | NTERCHANGE (1, J, K)
DO K = 1, NSl ZE1
DO J = 1, NSI ZE1

DO | = 1,NS| ZE1
X(1,3) = X(1,3) + Y(I,K * Z(K J)
ENDDO
ENDDO
ENDDO

The following code results when the | NTERCHANGE directive is used on the
preceding code:

DO | = 1,NS| ZE1
DO J = 1, NSI ZE1
DO K = 1, NSI ZE1
X(1,3) = X(1,3) + Y(I,K * Z(K, J)
ENDDO
ENDDO
ENDDO

107

Cray Fortran Reference Manual

4.4.2 Control Loop Collapse: [NO COLLAPSE

The loop collapse directives control collapse of the immediately following loop nest
or elemental array syntax statement. When the COLLAPSE directiveis applied to a
loop nest, the participating loops must be listed in order of increasing access stride.
NOCOLLAPSE disqualifies the immediately following loop from collapsing with
any other loop; before an elemental array syntax statement, it inhibits all collapse
in said statement.

SUBROUTI NE S(A, N, N1, N2)
REAL A(N, *)
I DI R$ COLLAPSE (I, J)
DOl =1, NL
DOJ = 1, N2
A(l,J) = A(l,J) + 42.0
ENDDO
ENDDO
END

The above yields code equivalent to the following, which should not be coded directly
because as program source, it violates the Fortran language standard.

SUBROUTI NE S(A, N, N1, N2)
REAL A(N, *)
DO1J = 1, NI*N2
A(1J, 1) = A(1J, 1) + 42.0
ENDDO
END

With array syntax, the collapse directive appears as follows:

SUBROUTINE S(A, B)
REAL, DIMENSION(:,:) :: A B

| DI R$ COLLAPSE
A=B | USER PROM SES UNI FORM ACCESS STRI DE.
END

In each of the above examples, the directive enables the compiler to assume
appropriate conformity between trip counts and array extends. The compiler will
diagnose misuse at compile time (when able); or, under option - Rd, at run time.

NOCOLLAPSE prevents the compiler from collapsing a given loop with others
or from performing any loop collapse within a specified array syntax statement.
Collapse is amost aways desirable, so this directive should be used sparingly.

SUBROUTI NE S(A, N)
DI MENSI ON A(N, N)
| DI R$ NOCOLLAPSE
DOl =1, N | DI SALLON COLLAPSE | NVOLVI NG | - LOOP.
DOJ =1, N
A(l,J) = 1.2
ENDDO
ENDDO
END

108 S-3901-71

Using Cray Fortran Directives [4]

Loop collapse is a special form of loop coalesce. Any perfect loop nest may be
coalesced into a single loop, with explicit rediscovery of the intermediate val ues of
original loop control variables. The rediscovery cost, which generally involves integer
division, is quite high. Hence, coalesce is rarely suitable for vectorization. It may be
beneficia for multithreading.

By definition, loop collapse occurs when loop coalesce may be done without the
rediscovery overhead. To meet this requirement, all memory accesses must have
uniform stride. Thistypically occurs when a computation can flow from one column
of amultidimensional array into the next, viewing the array as aflat sequence. Hence,
array sections such as A(:,3:7) are generally suitable for collapse, while a section like
A(1:n-1,}) lacks the needed access uniformity. Care must taken when applying the
collapse directive to assumed shape dummy arguments and Fortran pointers because
the underlying storage need not be contiguous.

4.4.3 Determine Register Storage: NOSI DEEFFECTS

S-3901-71

The NOSI DEEFFECTS directive allows the compiler to keep information in registers
across asingle call to a subprogram without reloading the information from memory
after returning from the subprogram. The directive is not needed for intrinsic
functions.

NOSI DEEFFECTS declares that a called subprogram does not redefine any variables
that meet the following conditions:

e Local to the calling program

* Passed as arguments to the subprogram

e Accessible to the calling subprogram through host association
» Declared in acommon block or module

» Accessible through USE association

The format of this directive is as follows:
! DI R$ NOSI DEEFFECTS f [, f] ...

f Symbolic name of a subprogram that the user is sure has no side
effects. f must not be the name of a dummy procedure, module
procedure, or internal procedure.

A procedure declared NOSI DEEFFECTS should not define variables in acommon
block or module shared by a program unit in the calling chain. All arguments
should havethe | NTENT(I N) attribute; that is, the procedure must not modify its
arguments. If these conditions are not met, results are unpredictable.

The NOSI DEEFFECTS directive must appear in the specification part of a program
unit and must appear before the first executable statement.

109

Cray Fortran Reference Manual

The compiler may move invocations of a NOSI DEEFFECTS subprogram from

the body of a DOloop to the loop preamble if the arguments to that function are
invariant in the loop. This may affect the results of the program, particularly if the
NOSI DEEFFECTS subprogram calls functions such as the random number generator
or the real-time clock.

The effects of the NOSI DEEFFECTS directive are similar to those that can be
obtained by specifying the PURE prefix on afunction or a subroutine declaration. For
more information about the PURE prefix, refer to the Fortran Standard.

4.4.4 Suppress Scalar Optimization: SUPPRESS

110

The SUPPRESS directive suppresses scalar optimization for all variables or only
for those specified at the point where the directive appears. This often prevents or
adversely affects vectorization of any loop that contains SUPPRESS. The format
of this directiveis as follows:

IDIR$ SUPPRESS [var [, var] ...]

var Variable that isto be stored to memory. If no variables are listed, al
variables in the program unit are stored. If more than one variableis
specified, use a commato separate vars.

At the point at which ! DI R$ SUPPRESS appears in the source code, variablesin
registers are stored to memory (to be read out at their next reference), and expressions
containing any of the affected variables are recomputed at their next reference

after ! DI R$ SUPPRESS. The effect on optimization is equivalent to that of an
external subroutine call with an argument list that includes the variables specified by
I'Dl R$ SUPPRESS (or, if no variablelist isincluded, all variablesin the program
unit).

SUPPRESS takes effect only if it is on an execution path. Optimization proceeds
normally if the directive path is not executed because of aGOTOor | F.

Example:

SUBROUTI NE SUB (L)
LOE CAL L
A=1.0 I Ais local
IF (L) THEN
! DI R$ SUPPRESS I Has no effect if L is false
CALL ROUTI NE()
ELSE
PRI NT *, A
END | F
END

S-3901-71

Using Cray Fortran Directives [4]

In this example, optimization replaces the reference to A in the PRI NT statement
with the constant 1. 0, even though ! DI R$ SUPPRESS appears between A=1. 0
and the PRI NT statement. The | F statement can cause the execution path to bypass
I DIl R$ SUPPRESS. If SUPPRESS appears before the | F statement, Ain PRI NT *
is not replaced by the constant 1. 0.

4.5 Local Use of Compiler Features
The following directives provide local control over specific compiler features.
[NO BOUNDS
* FREE and FI XED

The-f and - R command line options apply to an entire compilation, but these
directives override any command line specifications for source form or bounds
checking. The following subsections describe these directives.

4.5.1 Check Array Bounds: [NO BOUNDS

Array bounds checking provides a check of most array references at both compile
time and run time to ensure that each subscript is within the array's declared size.

Note: Bounds checking behavior differs with the optimization level. Complete
checking is guaranteed only when optimization is turned off by specifying - O 0
on thef t n command line.

The - R command line option controls bounds checking for a whole compilation. The
BOUNDS and NOBOUNDS directives toggle the feature on and off within a program
unit. Either directive can specify particular arrays or can apply to all arrays. The
formats of these directives are as follows:

IDIR$ BOUNDS [array [, array] ...]
IDIR$ NOBOUNDS [array [, array] ...]

array The name of an array. The name cannot be a subobject of a derived
type. When no array name is specified, the directive appliesto al
arrays.

BOUNDS remains in effect for a given array until the appearance of a NOBOUNDS
directive that appliesto that array, or until the end of the program unit. Bounds
checking can be enabled and disabled many timesin a single program unit.

Note: To be effective, these directives must follow the declarations for all
affected arrays. It is suggested that they be placed at the end of a program unit's
specification statements unless they are meant to control particular ranges of code.

S-3901-71 111

Cray Fortran Reference Manual

The bounds checking feature detects any reference to an array element whose
subscript exceeds the array's declared size. For example:

REAL A(10)

C DETECTED AT COWPI LE TI ME:
A(11) = X

C DETECTED AT RUN TIME | F | FUN(M EXCEEDS 10:
A(ITFUN(M) = W

The compiler generates an error message when it detects an out-of-bounds subscript.
If the compiler cannot detect the out-of-bounds subscript (for example, if the
subscript includes a function reference), a message is issued for out-of-bound
subscripts when your program runs, but the program is allowed to complete
execution.

Bounds checking does not inhibit vectorization but typically increases program run
time. If an array's last dimension declarator is * , checking is not performed on the
last dimension's upper bound. Arraysin formatted WRI TE and READ statements are
not checked.

Note: Array bounds checking does not prevent operand range errors that result
when operand prefetching attempts to access an invalid address outside an array.
Bounds checking is needed when very large values are used to calcul ate addresses
for memory references.

If bounds checking detects an out-of-bounds array reference, a message isissued for
only the first out-of-bounds array reference in the loop. For example:

DI MENSI ON A(10)
MAX = 20
A(MAX) = 2
DO 10 |

A(l)

10 CONTI NUE

CALL TVO(MAX, A)

END

SUBROUTI NE TWO(MAX, A)

REAL A(*) ! NO UPPER BOUNDS CHECKI NG DONE
END

1, MAX
|

The following messages are issued for the preceding program:

[ib-1961 a.out: WARNI NG
Subscript 20 is out of range for dinmension 1 for array
"A at line 3in file 't.f' with bounds 1:10.

lib-1962 a.out: WARNI NG

Subscript 1:20:1 is out of range for dinmension 1 for array
"A at line5infile '"t.f' with bounds 1:10.

112 S-3901-71

Using Cray Fortran Directives [4]

4.5.2 Specify Source Form: FREE and FI XED

The FREE and FI XED directives specify whether the source code in the program
unit is written in free source form or fixed source form. The FREE and FI XED
directives override the - f option, if specified, on the command line. The formats of
these directives are as follows:

! DIR$ FREE
IDIR$ FI XED

These directives apply to the source file in which they appear, and they allow you to
switch source forms within a source file.

You can change source form within an | NCLUDE file. After the | NCLUDE file has
been processed, the source form reverts back to the source form that was being used
prior to processing of the | NCLUDE file.

4.6 Storage Directives

The following directives specify aspects of storing common blocks, variables, or
arrays.

» BLOCKABLE
* BLOCKI NGSI ZE and NOBL OCKI NG
« STACK

The following sections describe these directives.

4.6.1 Permit Cache Blocking: BLOCKABLE Directive

S-3901-71

The BLOCKABLE directive specifiesthat it is legal to cache block the subsequent
loops.

The format of this directiveis as follows;

I DI R$ BLOCKABLE (do_variable, do_variable [, do_variable] . . .)

where do_variable specifies the do_variable names of two or more loops. The loops
identified by the do_variable names must be adjacent and nested within each other,
athough they need not be perfectly nested.

This directive tells the compiler that these loops can be involved in a blocking
situation with each other, even if the compiler would consider such atransformation
illegal. The loops must also be interchangeable and unrollable. This directive does
not instruct the compiler on which of these transformations to apply.

113

Cray Fortran Reference Manual

4.6.2 Declare Cache Blocking: BLOCKI NGSI ZE and NOBLOCKI NG

Directives

114

The BLOCKI NGSI ZE and NOBL OCKI NG directives assert that the loop following
the directive either is (or is not) involved in a cache blocking for the primary or
secondary cache.

The formats of these directives are as follows:
! DI R$ BLOCKI NGSI ZE(n1[, n2])

I DI R$ NOBLOCKI NG

ni,n2 An integer number that indicates the block size. If the loop is
involved in a blocking, it will have ablock size of n1 for the primary
cache and n2 for the secondary cache. The compiler attempts to
include this loop within such ablock, but it cannot guarantee this.

For n1, specify avalue such that n1. GE. 0. For n2, specify avalue
such that n2 . LE. 2%,

If n1 or n2 are 0, the loop is not blocked, but the entire loop isinside
the block.

Example:

SUBROUTI NE AMAT(X, Y, Z, N, M MV)
REAL(KI ND=8) X(100, 100), Y(100,100), Z(100, 100)
DOK =1, N
I DI R$ BLOCKABLE(J, 1)
I DI R$ BLOCKI NG SI ZE (20)
DOJ =1, M
I DI R$ BLOCKI NG Sl ZE (20)
DOl =1, MM
Z(1,K) = Z(1,K + X(1,3)*Y(J, K
END DO
END DO
END DO
END

S-3901-71

Using Cray Fortran Directives [4]

For the preceding code, the compiler makes 20 x 20 blocks when blocking, but it
could block the loop nest such that loop K is not included in thetile. If it did not,
add a BLOCKI NGSI ZE(0) directive just before loop K to specify that the compiler
should generate a loop such as the following:

SUBRQUTI NE AMAT(X, Y, Z, N M MV

REAL(KI ND=8) X(100, 100), Y(100,100), Z(100, 100)
DOJJ =1, M 20

DOIl =1, MM 20
DOK =1, N
DOJ = JJ, MN(M JJ+19)
DOl =11, MN(MM [1+19)
Z(1,K = Z(1,K + X(1,3)*Y(J, K
END DO
END DO
END DO
END DO
END DO
END

Note that an | NTERCHANGE directive can be applied to the same loop nest as a
BLOCKI NGSI ZE directive. The BLOCKI NGSI ZE directive applies to the loop it
directly precedes; it moves with that loop when an interchange is applied.

The NOBLOCKI NG directive prevents the compiler from involving the subsequent
loop in a cache blocking situation.

4.6.3 Request Stack Storage: STACK

The STACK directive causes storage to be allocated to the stack in the program unit
that contains the directive. This directive overridesthe - ev command line option in
specific program units of a compilation unit. For more information about the - ev
command line option, see- d disableand - e enable on page 25.

The format of this directive is as follows:

IDIR$ STACK

Data specified in the specification part of amodule or in a DATA statement is always
allocated to static storage. This directive has no effect on this static storage all ocation.

All SAVE statements are honored in program units that also contain a STACK
directive. This directive does not override the SAVE statement.

If the compiler finds a STACK directive and a SAVE statement without any objects
specified in the same program unit, a warning message is issued.

S-3901-71 115

Cray Fortran Reference Manual

The following rules apply when using this directive:
e |t must be specified within the scope of a program unit.

o If itisspecified in the specification part of a module, a message isissued. The
STACK directiveis allowed in the scope of a module procedure.

« If itisspecified within the scope of an interface body, a messageis issued.

4.7 Miscellaneous Directives

The following directives allow you to use several different compiler features:
« [NO| AUTOTHREAD
« CACHE

e CACHE_NT

* CONCURRENT

« [NO FUSI ON

« ID

« | GNORE_TKR

* NAME

* PREPROCESS

* WEAK

4.7.1 Control Autothreading: [NO| AUTOTHREAD

116

The AUTOTHREAD and NQAUTOTHREAD directives turn autothreading on and off
for selected blocks of code. These directives areignored if the- h t hr eadO or
- O t hr eadO options are used.

The formats of these directives are as follows:

I DI R$ AUTOTHREAD
! DI R$ NOCAUTOTHREAD

The PREFER_THREAD and PREFER_NOTHREAD advisory directives can be
used to indicate a preference for threading in the loop immediately following
the advisory directive. The NOAUTOTHREAD directive takes precedence over
PREFER_THREAD. For more information, see Autothreading for Loops:
LOOP_|I NFO PREFER [NO THREAD on page 99.

S-3901-71

Using Cray Fortran Directives [4]

4.7.2 Allocate Cache: CACHE

The CACHE directive is an advisory directive that asserts that all memory operations
with the specified symbols as the base are to be allocated in cache. Use this directive
to identify objects that should be placed in cache.

Advisory directives are directives the compiler honorsif conditions permit. When
this directiveis used, code performance may be improved because objects with high
cache reuse rates are retained in cache.

To use the CACHE directive, place it only in the specification part, before any
executable statement. The format of the CACHE directiveis:

I DIl R$ CACHE base name[, base name]

Where base_name is the object that should be placed into cache. This can be the base
name of any object such as an array, scalar structure, and so on, without member
references. |f you specify a pointer in the list, only the references and not the pointer
itself are cached.

The CACHE directive overrides the automatic cache management level that was
specified using the - O cachen option on the compiler command line. This directive
may be overridden locally by use of the LOOP_I NFOdirective.

4.7.3 Non-temporal Reads and Writes: CACHE_NT

S-3901-71

The CACHE_NT directive is an advisory directive that specifies objects that should
use non-temporal reads and writes. Use this directive to identify objects that should
not be placed in cache.

Advisory directives are directives the compiler honorsif conditions permit. When
this directive is used, code performance may be improved because objects with low
cache reuse rates are kept out of cache, thus making room for objects with higher
cache reuse rates.

To use the CACHE_NT directive, place it only in the specification part, before any
executable statement. The format of the CACHE _NT directiveis:

I DI R$ CACHE_NT base name[, base name]

Where base_name is the object that should use non-temporal reads and writes. This
can be the base name of any object such as an array, scalar structure, and so on,
without member references. If you specify a pointer in the list, only the references
and not the pointer itself have the cache non-temporal property.

The CACHE_NT directive overrides the automatic cache management level that was
specified using the - O cachen option on the compiler command line. This directive
may be overridden locally by use of the LOOP_I NFOdirective.

117

Cray Fortran Reference Manual

4.7.4 Specify Array Dependencies: CONCURRENT

The CONCURRENT directive conveys array dependency information to the compiler.
This directive affects the loop that immediately follows it. The CONCURRENT
directive is useful when vectorization is specified by the command line. The format
of this directiveis as follows:

I DI R$ CONCURRENT [SAFE_DI STANCE=n]

n An integer number that represents the number of additional
consecutive loop iterations that can be executed in parallel without
danger of data conflict. n must be an integeral constant > 0.

If SAFE_DI STANCE=n is not specified, the distance is assumed
to be infinite, and the compiler ignores all cross-iteration data
dependencies.

The CONCURRENT directive isignored if the SAFE_DI STANCE
argument is used and vectorization is requested on the command line.

Example. Consider the following code:

! DI R$ CONCURRENT SAFE_DI STANCE=3

DOl = K+1, N
X(1) = A(l) + X(1-K)
ENDDO

The CONCURRENT directive in this example informs the optimizer that the
relationship K > 3 istrue. Thisalowsthe compiler to load all of the following array
references safely during the Ith loop iteration:

X(1-K)

X(I - K+1)
X(I - K+2)
X(I - K+3)

4.7.5 Fuse Loops: [N FUSI ON

118

The FUSI ON and NOFUSI ON directives alow you to fine-tune the selection of which
DO loops the compiler should attempt to fuse. If there are only a few loops out of
many that you want to fuse, then use the FUSI ON directive with the- O f usi onl
option to confine loop fusion to these few loops. If there are only afew loops out

of many that you do not want to fuse, use the NOFUSI ON directive with the - O

f usi on2 option to specify no fusion for these loops.

These are the formats of the directives;
I DI R$ FUSI ON

I DI R NOFUSI ON

The FUSI ON directive should be placed immediately before the DO statement of
the loop that should be fused.

S-3901-71

Using Cray Fortran Directives [4]

4.7.6 Create Identification String: | D

The | Ddirective inserts a character string into the file. o produced for a Fortran
source file. The format of this directive is as follows:

IDIR$ | D "character_string"

character_string

The character string to be inserted into file. 0. The syntax box shows
guotation marks as the character_string delimiter, but you can use
either apostrophes (' ') or quotation marks (*).

The character_string can be obtained from file. 0 in one of the following ways:

S-3901-71

Method 1 — Using thewhat command. To use thewhat command to retrieve
the character string, begin the character string with the characters @ #) . For
example, assumethat i d. f contains the following source code:

IDR$ ID '@#)file.f 03 February 1999’
PRINT *, '"Hello, world'
END

The next step isto usefilei d. o asthe argument to the what command, as
follows:

% what id.o
% id. o:
% file.f 03 February 1999

Note that what does not include the special sentinel charactersin the output.

In the following example, character_string does not begin with the characters
@ #) . The output shows that what does not recognize the string.

Input filei d2. o contains the following:

IDIR$ ID 'file.f 03 February 1999
PRINT *, '"Hello, world'
END

Thewhat command generates the following output:

% what id2.0
% id2. o:

119

Cray Fortran Reference Manual

obtain output using the st r i ngs command.

Input filei d. f contains the following:

Method 2 — Using st ri ngs or od. The following example shows how to

'DIR$ ID "File: id.f Date: 03 February 1999"
PRINT *, '"Hello, world'
END

The st ri ngs command generates the following output:

% strings id.o

02/ 03/9913: 55: 52f 90
3.3cn

$MAI N

@CDE

@ATA

@\HAT

$MAI N

$STKOFEN

f$init
_FWF
$END
*2$F(6(
Hel | o,
$MAI N
File: id.f Date
%od -tc id.o

... portion of dump deleted
0000000001600 \O
0000000001620
0000000001640 r
... portion of dump deleted

wor | d
03 February 1999
\0

f
u

\0 \0 \O

D
y

\0
a

e : i
3 F e
\0 \0 \O0

F oo |
: 0

a r 9 9 \0 \0

d
b
\0

4.7.7 Disregard Dummy Argument Type, Kind, and Rank: | GNORE_TKR

The | GNORE_TKR directive directs the compiler to ignore the type, kind, and/or rank
(TKR) of specified dummy arguments in a procedure interface.

The format for this directiveis as follows:

IDIR$ | GNORE_TKR [[(letter) dummy_arg]]

nly to the dummy argument

|etter Theletter can be T, K, or R, or any combination of these letters (for
example, TK or KR). The letter applies o
it precedes. If letter appears, dummy_arg must appear.

dummy_arg If specified, it indicates the dummy argu

should be ignored.

ments for which TKR rules

If not specified, TKR rules are ignored for all dummy argumentsin

the procedure that contains the directive.

The directive causes the compiler to ignore the type, kind, and/or rank of the specified
dummy arguments when resolving a generic call to a specific call. The compiler also
ignores the type, kind, and/or rank on the specified dummy arguments when checking

all the specificsin a generic call for ambiguities.

120

S-3901-71

Using Cray Fortran Directives [4]

Example: The following directive instructs the compiler to ignore type, kind, and/or
rank rules for the dummy arguments of the following subroutine fragment:

subrouti ne exanpl e(A B, C, D
IDIRS IGNORE_TKR A, (R) B, (TK) C, (K) D

Table 8 indicates what is ignored for each dummy argument.

Table 8. Explanation of Ignored TKRs

Dummy Argument Ignored

A Type, kind and rank isignored
B Only rank isignored

C Type and kind isignored

D Only kind isignored

4.7.8 External Name Mapping: NAME

The NAME directive allows you to specify a case-sensitive external name, or a name
that contains characters outside of the Fortran character set, in a Fortran program. The
case-sensitive external name is specified on the NAME directive, in the following

format:

I DI R$ NAME (fortran_name=" external_name"
[, fortran_name="external_name"] ...)
fortran_name

The name used for the object throughout the Fortran program.
external_name
The external form of the name.

Rules for Fortran naming do not apply to the external_name string; any character
sequence isvalid. You can use this directive, for example, when writing callsto C
routines.

Example:

PROGRAM MAI N

I DI RS NAME (FOO="XyZ")
CALL FOO I XyZ is really being called
END PROGRAM

Note: The Fortran standard Bl ND feature provides some of the capability of the
NAME directive.

S-3901-71 121

Cray Fortran Reference Manual

4.7.9 Preprocess Include File: PREPROCESS

The PREPROCESS directive allows an include file to be preprocessed when the
compilation does not specify the preprocessing command line option. This directive
does not cause preprocessing of included files, unless they too use the directive. If
the preprocessing command line option is used, preprocessing occurs normally for
al files.

To use the directive, it must be the first line in the include file and in each included
file that needs to be preprocessing.

Thisis the format of the PREPROCESS directive:
I DI R$ PREPROCESS [expand_nmacr os]

The optional expand_rmacr os clause alows the compiler to expand all macros
within the include files. Without this clause, macro expansion occurs only within
preprocessing directives.

4.7.10 Specify Weak Procedure Reference: WEAK

122

Sometimes, the code path of a program never executes at run time because of some
condition. If this code path references a procedure that is external to the program (for
example, alibrary procedure), the linker will add the binary for the procedure to the
compiled program, resulting in alarger program. The WEAK directive can prevent
the compiler driver from adding the binary to your program, resulting in a smaller
program and less use of memory.

The VWEAK directive is used with procedures and variables to declare weak objects.
The use of aweak object isreferred to as a weak reference. The existence of aweak
reference does not cause the compiler driver to add the appropriate binariesinto a
compiled program, so executing aweak reference will cause the program to fail. The
compiler support for determining if the binary of aweak object isloaded is deferred.
To cause the compiler driver to add the binaries so the weak reference will work, you
must have a strong reference (a normal reference) somewhere in the program.

The following example illustrates the reason the WEAK directive is used. The startup
code, which is compiled into every Fortran program, calls the SHMEM initialization
routine, which causes the linker to add the binary of the initialization routine to
every compiled program if a strong reference to the routine is used. Thisbinary is
unnecessary if a program does not use SHMEM. To avoid linking unnecessary code,
the startup code uses the WEAK directive for the initialization routine. In this manner,
if the program does not use SHMEM, the linker does not add the binary of the
initialization routine even though the startup code callsit. However, if the program
callsthe SHMEM routines using strong references, the linker adds the necessary
binaries, including the initialization binary into the compiled program.

S-3901-71

Using Cray Fortran Directives [4]

S-3901-71

The WEAK directive has two forms;

I DI R$ WEAK procedure name [, procedure_name]
I DI R$ WEAK procedure name = stub_name[, procedure namel = stub_namel]

The first form allows you to specify one or more weak objects. This form

requires you to implement code that senses that the procedure_name procedure is
loaded before calling it. The second form allows you to point a weak reference
(procedure_name) to a stub procedure that existsin your code. This allows you to call
the stub if a strong reference to procedure_name does not exist. If a strong reference
to procedure_name exists, it is called instead of the stub. The stub_name procedure
must have the same name and dummy argument list as procedure_name.

Note: The linker does not issue an unresolved reference error message for weak
procedure references.

123

Cray Fortran Reference Manual

124 S-3901-71

Source Preprocessing [5]

Source preprocessing can help you port a program from one platform to another by
alowing you to specify source text that is platform specific.

For a source file to be preprocessed automatically, it must have an uppercase
extension, either . F (for afilein fixed source form), or . F90 or . FTN (for afilein
free source form). To specify preprocessing of source files with other extensions,
including lowercase ones, use the - eP or - eZ options described in Command Line
Options on page 133.

5.1 General Rules

S-3901-71

You can alter the source code through source preprocessing directives. These
directives are fully explained in Directives on page 126. The directives must be used
according to the following rules:

* Do not use source preprocessor (#) directives within multiline compiler directives
(CDI R$, ! DI R$, CSD$, ! CSD$, C$QWP, or | $OVP).

* You cannot include a source file that contains an #i f directive without a
balancing #endi f directive within the samefile.

The#i f directiveincludesthe#i f def and #i f ndef directives.

» If adirectiveistoo long for one source line, the backslash character (\) isused to
continue the directive on successive lines. Successive lines of the directive can
begin in any column.

The backslash character (\) can appear in any location within a directive in which
white space can occur. A backslash character (\) in acomment istreated as a
comment character. It is not recognized as signaling continuation.

» Every directive begins with the pound character (#), and the pound character (#)
must be in column 1.

e Blank and tab (HT) characters can appear between the pound character (#) and
the directive keyword.

e You cannot write form feed (FF) or vertical tab (VT) charactersto separate tokens
on adirective line. That is, a source preprocessing line must be continued, by
using a backslash character (\), if it spans source lines.

125

Cray Fortran Reference Manual

« Blanks are significant, so the use of spaces within a source preprocessing directive
isindependent of the source form of the file. The fields of a source preprocessing
directive must be separated by blank or tab (HT) characters.

* Any user-specified identifier that is used in a directive must follow Fortran rules
for identifier formation. The exceptionsto this rule are as follows:

— Thefirst character in a source preprocessing name (a macro hame) can be
an underscore character ().

— Source preprocessing names are significant in their first 132 characters
whereas atypical Fortran identifier is significant only initsfirst 63 characters.

» Source preprocessing identifier names are case sensitive.

* Numeric literal constants must be integer literal constants or real literal constants,
as defined for Fortran.

» Comments written in the style of the C language, beginning with / * and ending
with */ | can appear anywhere within a source preprocessing directive in which
blanks or tabs can appear. The comment, however, must begin and end on a
single source line.

» Directive syntax allows an identifier to contain the! character. Therefore, placing
the! character to start a Fortran comment on the same line as the directive should
be avoided.

5.2 Directives

The blanks shown in the syntax descriptions of the source preprocessing directives are
significant. The tab character (HT) can be used in place of ablank. Multiple blanks
can appear wherever a single blank appears in a syntax description.

5.2.1 #i ncl ude Directive

The#i ncl ude directive directs the system to use the content of afile. Just aswith
the | NCLUDE line path processing defined by the Fortran standard, an #i ncl ude
directive effectively replaces that directive line by the content of filename. This
directive has the following formats:

#i ncl ude " filename"

#i ncl ude <filename>

126 S-3901-71

Source Preprocessing [5]

filename A file or directory to be used.

In thefirst form, if filename does not begin with aslash (/') character,
the system searches for the named file, first in the directory of the
file containing the #i ncl ude directive, then in the sequence of
directories specified by the - | option(s) on thef t n command line,
and then the standard (default) sequence. If filename begins with a
slash (/') character, it is used asis and is assumed to be the full path
to the file.

The second form directs the search to begin in the sequence of
directories specified by the- I option(s) on thef t n command line
and then search the standard (default) sequence.

The Fortran standard prohibits recursion in | NCLUDE files, so recursion is also
prohibited in the #i ncl ude form.

The #i ncl ude directives can be nested.

When the compiler isinvoked to do only source preprocessing, not compilation, text
will be included by #i ncl ude directives but not by Fortran | NCLUDE lines. For
information about the source preprocessing command line options, see Command
Line Options on page 133.

5.2.2 #defi ne Directive

S-3901-71

The#def i ne directive lets you declare a variable and assign a value to the variable.
It also allows you to define a function-like macro. This directive has the following
format:

#def i ne identifier value
#def i ne identifier(dummy_arg_list) value

The first format defines an object-like macro (also called a source preprocessing
variable), and the second defines a function-like macro. In the second format, the left
parenthesis that begins the dummy_arg_list must immediately follow the identifier,
with no intervening white space.

identifier The name of the variable or macro being defined.

Rules for Fortran variable names apply; that is, the name cannot have
aleading underscore character (_). For example, ORI Gisavalid
name, but ORI Gisinvalid.

dummy_arg_list
A list of dummy argument identifiers.

value The value is a sequence of tokens. The value can be continued onto
more than one line using backslash (\) characters.

127

Cray Fortran Reference Manual

If a preprocessor identifier appears in a subsequent #def i ne directive without
being the subject of an intervening #undef directive, and the value in the second
#def i ne directiveis different from the value in the first #def i ne directive,
then the preprocessor issues a warning message about the redefinition. The second
directive's value is used. For more information about the #undef directive, see
#undef Directive on page 128.

When an object-like macro's identifier is encountered as a token in the source file,
it is replaced with the value specified in the macro's definition. Thisis referred to
as an invocation of the macro.

The invocation of a function-like macro is more complicated. It consists of the
macro's identifier, immediately followed by aleft parenthesis with no intervening
white space, then alist of actual arguments separated by commas, and finally a
terminating right parenthesis. There must be the same number of actual argumentsin
the invocation as there are dummy arguments in the #def i ne directive. Each actual
argument must be balanced in terms of any internal parentheses. The invocation is
replaced with the value given in the macro's definition, with each occurrence of any
dummy argument in the definition replaced with the corresponding actual argument
in the invocation.

For example, the following program printsHel 1 o, wor | d. when compiled with
the - F option and then run:

PROGRAM P
#define GREETING 'Hell o, world.'

PRI NT *, GREETI NG
END PROGRAM P

The following program printsHel | o, Hel | o, worl d. when compiled with the
- F option and then run:

PROGRAM P
#define GREETI NG strl, str2) strl, strl, str2
PRINT *, GREETING'Hello, ', '"world.")

END PROGRAM P

5.2.3 #undef Directive

128

The#undef directive sets the definition state of identifier to an undefined value. If
identifier is not currently defined, the #undef directive has no effect. This directive
has the following format:

#undef identifier

identifier The name of the variable or macro being undefined.

S-3901-71

Source Preprocessing [5]

5.2.4 # (Null) Directive

The null directive simply consists of the pound character (#) in column 1 with no
significant charactersfollowing it. That is, the remainder of thelineistypically blank
or is a source preprocessing comment. This directive is generally used for spacing
out other directive lines.

5.2.5 Conditional Directives

S-3901-71

Conditional directives cause lines of code to either be produced by the source
preprocessor or to be skipped. The conditional directives within a source file form
if-groups. An if-group beginswith an #i f , #i f def , or #i f ndef directive,
followed by lines of source code that you may or may not want skipped. Severa
similarities exist between the Fortran | F construct and if-groups:

The#el i f directive correspondsto the ELSE | F statement.
* The#el se directive corresponds to the EL SE statement.

e Just asan | F construct must be terminated with an END | F statement, an
if-group must be terminated with an #endi f directive.

* Just aswith an | F construct, any of the blocks of source statementsin an if-group
can be empty.
For example, you can write the following directives:

#if MN VALUE == 1
#el se

#endi f
Determining which group of source lines (if any) to compile in an if-group is

essentially the same as the Fortran determination of which block of an | F construct
should be executed.

129

Cray Fortran Reference Manual

5.25.1 #i f Directive

The#i f directive has the following format:

#i f expression

expression An expression. The values in expression must be integer literal
constants or previously defined preprocessor variables. The
expression is an integer constant expression as defined by the
C language standard. All the operators in the expression are C
operators, not Fortran operators. The expression is evaluated
according to C language rules, not Fortran expression evaluation
rules.

Note that unlike the Fortran | F construct and | F statement logical
expressions, expression in an #i f directive need not be enclosed
in parentheses.

The#i f expression can also contain the unary def i ned operator, which can be
used in either of the following formats:

defi ned identifier
def i ned(identifier)

When the def i ned subexpression is evaluated, the value is 1 if identifier is
currently defined, and O if it is not.

All currently defined source preprocessing variables in expression, except those that
are operands of def i ned unary operators, are replaced with their values. During this
evaluation, all source preprocessing variablesthat are undefined evaluate to O.

Note that the following two directive forms are not equivalent:
o #if X
o #if defined(X)

In the first case, the condition istrueif X has a nonzero value. In the second case, the
condition is true only if X has been defined (has been given avalue that could be 0).

5.2.5.2 #i f def Directive

130

The#i f def directiveisused to determineif identifier is predefined by the source
preprocessor, has been named in a#def i ne directive, or has been named in a
ftn - Dcommand line option. For more information about the - D option, see
Command Line Options on page 133. This directive has the following format:

#i f def identifier

S-3901-71

Source Preprocessing [5]

The#i f def directiveis equivalent to either of the following two directives:
o #if defined identifier
o #if defined(identifier)

5.2.5.3 #i f ndef Directive

The#i f ndef directive tests for the presence of an identifier that is not defined.
This directive has the following format:

#i f ndef identifier

This directive is equivaent to either of the following two directives:
o #if ! defined identifier

o« #if | defined(identifier)

5.2.5.4 #el i f Directive

The#el i f directive serves the same purpose in an if-group asdoesthe ELSE | F
statement of a Fortran | F construct. Thisdirective has the following format:

#el i f expression

expression The expression follows all the rules of the integer constant expression
inan #i f directive.

5.2.5.5 #el se Directive

The #el se directive serves the same purpose in an if-group as does the ELSE
statement of a Fortran | F construct. This directive has the following format:

#el se

5.2.5.6 #endi f Directive

The#endi f directive serves the same purpose in an if-group as doesthe END | F
statement of a Fortran | F construct. This directive has the following format:

#endi f

S-3901-71 131

Cray Fortran Reference Manual

5.3 Predefined Macros

132

The Cray Fortran compiler source preprocessing supports a number of predefined
macros. They are divided into groups as follows:

* Macros based on the host machine

e Macros based on CLE system targets

* Macros based on the Cray Fortran compiler
* Macros based on the source file

The following predefined macros are based on the host system (the system upon
which the compilation is being done):

uni X, __uni x, __unix__

Always defined. (The leading characters in the second form consist
of 2 consecutive underscores; the third form consists of 2 leading
and 2 trailing underscores.)

The following predefined macros are based on CLE systems as targets:

_ ADDR64
Defined for CLE systems as targets. The target system must have
64-bit address registers.
_ OPENVP
Defined as the publication date of the OpenMP standard supported,
as a string of the form yyyymm.
_MAXVL_8
Defined as 16, the number of 8-bit elements that fit in an XMM
register ("vector length").
_MAXVL_16
Defined as 8.
_MAXVL_32
Defined as 4.
_MAXVL_64
Defined as 2.
_MAXVL_128
Defined as 0.

S-3901-71

Source Preprocessing [5]

The following macro is based on the Cray Fortran compiler:

_CRAYFTN

Defined as 1.

The following predefined macros are based on the source file:

_line__, LINE _
Defined to be the line number of the current source line in the source
file.

file, FILE _

Defined to be the name of the current source file.

__date_, DATE _

Defined to be the current date in the form mm/dd/yy.

time_ , TIME _

Defined to be the current in the form hh:mm:ss.

5.4 Command Line Options

S-3901-71

The following f t n command line options affect source preprocessing.

The - Didentifier[=value] option, which defines variables used for source
preprocessing. For more information about this option, see - D identifier
[=valug] on page 32.

The - eP option, which performs source preprocessing on file. f [90] ,

file. F[90] , file. f t n, or file. FTN but does not compile. The - eP option
producesfile. i . For more information about this option, see- d disable and
- e enable on page 25.

The - eZ option, which performs source preprocessing and compilation on

file. f[90] , file. F[90] , file. f t n, or file. FTN. The - eZ option produces
file. i . For more information about this option, see- d disableand - e enable
on page 25.

The - F option, which enables macro expansion throughout the source file. For
more information about this option, see - F on page 32.

The- U identifier [, identifier] ... option, which undefines variables used for
source preprocessing. For more information about this option, see- U identifier
[, identifier] ... on page 70.

133

Cray Fortran Reference Manual

The- D identifier [=value] , - F, and - U identifier [, identifier] ... options
are ignored unless one of the following is true:

» The Fortran input sourcefile is specified as either file. F, file. F90, or file. FTN.

e The- eP or - eZ options have been specified.

134 S-3901-71

Using the OpenMP Fortran API [6]

OpenMP is aparallel programming model that is portable across shared memory
architectures from Cray and other vendors. The Cray Fortran compiler supports
the OpenMP Application Program Interface, Veersion 3.0 standard. All OpenMP
library procedures and directives, except for limitations in a few directive clauses,

are supported.

All OpenMP directives and library procedures are documented
by the OpenMP Fortran specification which is accessible at
htt p:// opennp. or g/ wp/ opennp- speci fi cati ons/.

6.1 Limitations

The following known limitations affect OpenMP on Cray systems.

S-3901-71

Orphaned task constructs may have an implicit t askwai t directive added to
the end of the routine. Thisis not required by the specification but is currently
required by the Cray implementation. This limits the amount of parallelism that
may be seen. This limitation will be removed in afuture release.

Task switching is not implemented. The thread that starts executing atask will be
the thread that finishes the task. Task switching will be implemented in a future
release.

Thecol | apse clauseisaccepted but is not implemented in the compiler. This
limitation will be removed in a future release.

Thewor kshar e constructs are only partially optimized. The current
implementation workshares parallel work it discoversinside the wor kshar e
construct. However, there may be more synchronization than strictly required at
thistime. Thislimitation will be addressed in afuture release.

135

http://www.openmp.org/specs/

Cray Fortran Reference Manual

6.2 Differences

The following are Cray-specific behaviors in areas that are defined as
implementati on-dependent by the OpenM P specification.

« Paradle region constructs:

— If apardlé region is encountered while dynamic adjustment of the number
of threads is disabled, and the number of threads specified for the parallel
region exceeds the number that the runtime system can supply, the program
terminates.

— The number of physical processors actually hosting the threads at any given
timeisfixed at program startup and is specified by theaprun -d depth
option.

¢ DOand PARALLEL DOdirectives:

— SCHEDULE(GUI DED, chunk) —The size of the initial chunk for the master
thread and other team members is approximately equal to the trip count
divided by the number of threads.

— SCHEDULE(RUNTI ME) —The schedule type and chunk size can be chosen
at run time by setting the OVP_SCHEDUL E environment variable. If this
environment variable is not set, the schedule type and chunk size default to
STATI Cand 0, respectively.

— Default schedule—In the absence of the SCHEDULE clause, the default
schedule is STATI C and the default chunk size is roughly the number of
iterations divided by the number of threads.

* THREADPRI VATE directives: if the dynamic threads mechanism is enabled, the
definition and association status of athread's copy of the variable is undefined and
the alocation status of an alocatable array is undefined.

* PRI VATE clause: if avariable is declared as PRI VATE and the variable is
referenced in the definition of a statement function, and the statement function
is used within the lexical extent of the directive construct, then the statement
function references the PRI VATE version of the variable.

e ATOM Cdirectives: the ATOM Cdirective is replaced with a critical section that
encloses the statement.

136 S-3901-71

Using the OpenMP Fortran API [6]

S-3901-71

OpenMP library functions:

OVP_SET_NUM_THREADS—If dynamic adjustment of the number of threads
isdisabled, the nunber _of _t hr eads argument sets the number of threads
for all subsequent parallel regions until this procedure is called again with

a different value.

OVP_SET_DYNAM C—The default for dynamic thread adjustment is on.
OVP_NESTED—The default for nested parallelismisf al se.

OVP_SET_MAX_ACTI VE_LEVELS—The Cray implementation of OpenMP
supportsthe OpenMP 3.0 onp_set _max_acti ve_| evel s optionto limit
the depth of nested parallelism. The number specified controls the maximum
number of nested parallel levels with more than one thread. The default value
is 1 (nesting disabled).

OVP_GET_MAX_ACTI VE_LEVELS—The Cray implementation of OpenMP
supports the OpenMP 3.0 onp_get _max_act i ve_I evel s function to
return the maximum number of nested parallel levels currently allowed.

OpenMP environment variables:

OVP_DYNAM C—The default valueis. TRUE.
OVP_NESTED—The default valueis . FALSE.

OVP_NUM_THREADS—If this environment variable is not set and the user
does not usethe onp_set _num t hr eads call to set the number of
OpenMP threads, the default is 1 thread.

The maximum number of threads per compute node is 4 times the number of
alocated processors. If the requested value of OMP_NUM_THREADS is more
than the number of threads an implementation can support, the behavior of the
program depends on the value of the OVP_DYNAM C environment variable.

If OMP_DYNAM Cis. FALSE. , the program terminates. If OVP_DYNAM C
is. TRUE. , it uses up to 4 times the number of allocated processors. For
example, on a quad-core system, this means the program can use up to 16
threads per compute node.

OVP_ SCHEDUL E—The default values for this environment variable are
STATI Cfor schedule and O for chunk size.

OVP_MAX_ACTI VE_LEVELS—The default valueis 1.
OVP_STACKSI ZE—The default value is 128 MVB.

OVP_THREAD LI M T—Sets the number of OpenMP threads to use for
the whole OpenMP program by setting the thread-limit-var ICV. The Cray
implementation defaults to four times the number of available processors.

137

Cray Fortran Reference Manual

— OW_WAI T_POLI CY—Provides a hint to an OpenM P implementation about
the desired behavior of waiting threads by setting the wait-policy-var ICV. A
compliant OpenM P implementation may or may not abide by the setting of
the environment variable. The default valueisact i ve.

e OpenMP library routines with generic interfaces: if an OMP runtime library
routine interface is defined to be generic by an implementation, use of arguments
of kind other than those specified by the OVP_* _KI ND constantsis undefined.

These OpenMP features have Cray-specific behaviors in areas not defined as
implementation-dependent by the OpenM P specification:

e Iftheonp_l i b moduleis not used and the kind of the actual argument does
not match the kind of the dummy argument, the behavior of the procedureis
undefined.

e Theonp_get _winme and onp_get _wt i ck procedures return
REAL (KI ND=8) valuesinstead of DOUBLE PRECI SI ON values.

6.3 Optimizations

138

A certain amount of overhead is associated with multiprocessing aloop. If the work
occurring in the loop is small, the loop can actually run slower by multiprocessing
than by single processing. To avoid this, make the amount of work inside the
multiprocessed region as large as possible, asis shown in the following examples.

Consider the following code:

DOK =1, N
DOl =1, N
DOJ =1, N
AL,) = A(1,3) + B(1,K * O(K J)
END DO
END DO
END DO

For the preceding code fragment, you can parallelize the J loop or the | loop. You
cannot parallelize the K loop because different iterations of the K loop read and write
the same values of A(|, J) . Try to paralelize the outermost DO loop if possible,
because it encloses the most work. In this example, that isthe | loop. For this
example, use the technique called loop interchange. Although the parallelizable loops
are not the outermost ones, you can reorder the loops to make one of them outermost.

S-3901-71

Using the OpenMP Fortran API [6]

Thus, loop interchange would produce the following code fragment:

I $OMP PARALLEL DO PRI VATE(l, J, K)
DOl =1, N
DOK=1, N
DOJ =1, N
AL,) = A(1,J) + B(1,K * (K J)
END DO
END DO
END DO

Now the parallelizable loop encloses more work and shows better performance.
In practice, relatively few loops can be reordered in this way. However, it does
occasionally happen that several loops in a nest of loops are candidates for

paralelization. In such acase, it isusually best to parallelize the outermost one.

Occasionally, the only loop available to be paralelized has afairly small amount of
work. It may be worthwhile to force certain loops to run without parallelism or to
select between a parallel version and a serial version, on the basis of the length of
the loop.

Example 2: Conditional paralelism. The loop is worth parallelizing if Nis
sufficiently large. To overcome the parallel loop overhead, N needs to be around
1000, depending on the specific hardware and the context of the program. The
optimized version would use an | F clause on the PARALLEL DOdirective:

I $OMP PARALLEL DO IF (N .GE. 1000), PRIVATE(I)
DOl =1, N
ALY = A1) + X*B(I)
END DO

6.4 Compiler Options

S-3901-71

These Cray Fortran compiler options affect OpenMP directives and usage.

-h [no] onp Enables or disables compiler recognition of OpenMP directives.
By default, OpenMP is enabled. This option isidentical to the- O
[no] onp option and is provided for command-line compatibility
with the Cray C/C++ compiler. For more information, see - h
[no] onp on page 37.

-h [no]lonp_trace

Enables or disables the insertion of CrayPat OpenMP tracing
calls. By default tracing is off. For more information, see - h
[no] onp_trace on page 37.

-O [no] onp Thisoptionisidentical to-h [no] onp.

139

Cray Fortran Reference Manual

-h threadn Thisoption controls both OpenMP and autothreading. If nis 0, both
OpenMP and autothreading are disabled. For n 1 through 3, other
behaviors are specified. Thisoptionisidentical to- O t hr eadn and
is provided for command-line compatibility with the Cray C/C++
compiler. For more information, see- O t hr eadn on page 56.

-O threadn Thisoptionisidentical to- h t hreadn.

- x dirlist This option can be used to disable specified directives or classes of
directives, including OpenMP directives. For more information, see
- x dirlist on page 71.

6.5 apr un Options

140

The-d depth option of theapr un command is required to reserve more than one
physical processor for an OpenMP process. For best performance, depth should
be the same as the maximum number of threads the program uses. The maximum
number of threads per compute node is 4 times the number of allocated processors.

This example shows how to reserve the physical processors:
aprun -d depth onpProgram

If neither the OMP_NUM_THREADS environment variable nor the
onp_set_num t hreads() cal isused to set the number of OpenMP threads,
the system defaults to 1 thread.

Theapr un options- n processesand - N processes _per_node are compatible with
OpenMP but do not directly affect the execution of OpenMP programs.

S-3901-71

Cray Fortran Defined Externals [7]

7.1 Conformance Checks

The amount of error-checking of edit descriptors with input/output (1/O) list items
during formatted READ and WRI TE statements can be selected through a compiler
driver option or through an environment variable.

By default, the compiler provides only limited error-checking.

Use the compiler driver options to choose the table to be used for the conformance
check. The tableisthen part of the executable and no environment variable is
required. The compiler driver options alow a choice of checking or no checking with
aparticular version of the Fortran standard for formatted READ and WRI TE. See the
following tables: Table 16, Table 17, Table 18, and Table 19.

The environment variable FORMAT_TYPE_CHECKI NGis evaluated during
execution. The environment variable overrides a table chosen through the compiler
driver option. The environment variable provides an intermediate type of checking
that is not provided by the compiler driver option. The environment variable
FORMAT_TYPE_CHECKI NGis described in Interaction of Directives with the - x
Command Line Option on page 87.

To select the least amount of checking, use one or more of the following f t n
command line options.

e On CLE systems with formatted READ, use:

ftn -W, --def sym _RCHK=_RNOCHK *.f(note the doubl e dashes
t hat precede defsym

e On CLE systems with formatted WRI TE, use:
ftn -W, --def sym _WCHK=_WNOCHK *. f

e On CLE systems with both formatted READ and WRI TE, use:
ftn -W, --def sym _WCHK=_WNOCHK - W, - - def sym _RCHK=_RNOCHK *. f

S-3901-71 141

Cray Fortran Reference Manual

142

To select strict amount of checking for either FORTRAN 77 or Fortran 90, use one
or more of the following f t n command line options.

On CLE systems with formatted READ, use:
ftn -W, --def sym _RCHK=_RCHK77 *.f

ftn -W, --def sym _RCHK=_RCHK90 *.f

On CLE systems with formatted WRI TE, use:
ftn -W, --def sym WCHK=_WCHK77 *.f

ftn -W, --def sym _WCHK=_WCHK90 *.f

On CLE systems with both formatted READ and WRI TE, use:

ftn -W, --def sym WCHK=_WCHK77 -W, - - def sym _RCHK=_RCHK77 *.f

ftn -W, --def sym _WCHK=_WCHKO90 - Wi, - - def sym _RCHK=_RCHK90 *.f

S-3901-71

Cray Fortran Language Extensions [8]

The Cray Fortran Compiler supports extended features beyond those specified by
the current standard. Some of these extensions are widely implemented in other
compilers and likely to become standard features in the future, while others are
unique and specific to Cray systems. The implementation of any extension may
change in order to conform to future language standards.

For information about obsolete features, see Obsolete Features (Chapter 9, Obsolete
Features on page 175).

The listings provided by the compiler identify language extensions when the- e n
command line option is specified.

8.1 Characters, Lexical Tokens, and Source Form

8.1.1 Characters Allowed in Names

Variables, named constants, program units, common blocks, procedures, arguments,
constructs, derived types (types for structures), namelist groups, structure
components, dummy arguments, and function results are among the elementsin a
program that have a name. As extensions, the Cray Fortran compiler permits the
following characters in names:

currency_symbol

alphanumeric_character is currency_symbol

is $

A name must begin with aletter and can consist of letters, digits, and underscores.

The Cray Fortran compiler permits you to use the dollar sign ($) in a name, but it
cannot be the first character of a name.

Cray does not recommend using $ in user names because it can cause conflicts with
the names of internal variables or library routines.

8.1.2 Switching Source Forms

S-3901-71

The Cray Fortran compiler allows you to switch between fixed and free source forms
within a source or include file by using the FI XED and FREE compiler directives.

143

Cray Fortran Reference Manual

8.1.3 Continuation Line Limit

The Cray Fortran compiler allows a statement to have an unlimited number of
continuation lines. The Fortran standard allows only 255 continuation lines.

8.1.4 D Lines in Fixed Source Form

8.2 Types

The Cray Fortran compiler allowsaD or d character to occur in column one in fixed
source form. Typically, the compiler treats aline with aD or d character in column
one as acomment line. Whenthe- e d command line option isin effect, however,
the compiler replaces the D or d character with ablank and treats the rest of the line
as a source statement. This can be used, for example, for debugging purposes if the
rest of the line contains a PRI NT statement.

This functionality is controlled through the- e d and-d d options on the compiler
command line. For more information about these options, see the f t n(1) man page.

The Cray Fortran compiler supports the following additional data types. This
preserves compatibility with other vendor's systems.

e Cray pointer
e Cray character pointer
* Boolean (or typeless)

The Cray Fortran compiler also supports the TYPEALI AS statement as a means of
creating alternate names for existing types and supports an expanded form of the
ENUM statement.

8.2.1 Alternate Form of LOG CAL Constants

The Cray Fortran compiler accepts. T. and . F. asalternateformsof . t rue. and
. fal se., respectively.

8.2.2 Cray Pointer Type

144

The Cray PO NTER statement declares one variable to be a Cray pointer (that is, to
have the Cray pointer data type) and another variable to be its pointee. The value
of the Cray pointer is the address of the pointee. This PO NTER statement has the
following format:

PO NTER (pointer_name, pointee name [(array_spec)])
[, (pointer_name, pointee name[(array spec) 1)] ...

S-3901-71

Cray Fortran Language Extensions [8]

S-3901-71

pointer_name

Pointer to the corresponding pointee_name. pointer_name contains
the address of pointee_name. Only a scalar variable can be declared
type Cray pointer; constants, arrays, statement functions, and external
functions cannot.

pointee_name

Pointee of corresponding pointer_name. Must be a variable name,
array declarator, or array name. The value of pointer_nameis
used as the address for any reference to pointee_name; therefore,
pointee_name is not assigned storage. If pointee_name is an
array declarator, it can be explicit-shape (with either constant or
nonconstant bounds) or assumed-size.

array_spec If present, this must be either an explicit_shape spec list, with either
constant or nonconstant bounds) or an assumed_size_spec.

Fortran pointers are declared as follows:

PO NTER :: [object-name-list]
Cray Fortran pointers and Fortran standard pointers cannot be mixed.

Example:

PO NTER(P, B), (Q O

This statement declares Cray pointer P and its pointee B, and Cray pointer Q and
pointee C, the pointer's current value is used as the address of the pointee whenever
the pointee is referenced.

An array that is named as a pointee in a Cray PO NTER statement is a pointee array.
Its array declarator can appear in a separate type or DI MENSI ON statement or in the
pointer list itself. In a subprogram, the dimension declarator can contain references to
variables in acommon block or to dummy arguments. As with nonconstant bound
array arguments to subprograms, the size of each dimension is evaluated on entrance
to the subprogram, not when the pointee is referenced. For example:

PO NTER(I X, X(N, 0: M)

In addition, pointees must not be deferred-shape or assumed-shape arrays. An
assumed-size pointee array is not allowed in amain program unit.

You can use pointers to access user-managed storage by dynamically associating
variables and arraysto particular locationsin ablock of storage. Cray pointers do not
provide convenient manipulation of linked lists because, for optimization purposes,

it is assumed that no two pointers have the same value. Cray pointers also allow the
accessing of absolute memory locations.

The range of a Cray pointer or Cray character pointer depends on the size of memory
for the machine in use.

145

Cray Fortran Reference Manual

Restrictions on Cray pointers are as follows:

* A Cray pointer variable should only be used to alias memory locations by using
the LOC intrinsic.

e A Cray pointer cannot be pointed to by another Cray or Fortran pointer; that is,
a Cray pointer cannot a so be a pointee or atarget.

» A Cray pointer cannot appear in a PARAVETER statement or in atype declaration
statement that includes the PARANMETER attribute.

* A Cray pointer variable cannot be declared to be of any other data type.
» A Cray character pointer cannot appear in a DATA statement.

e Anarray of Cray pointersis not allowed.

* A Cray pointer cannot be a component of a structure.

Restrictions on Cray pointees are as follows:

* A Cray pointee cannot appear in a SAVE, STATI C, DATA, EQUI VALENCE,
COMMON, AUTOVATI C, or PARAMETER statement or Fortran pointer statement.

e A Cray pointee cannot be a dummy argument; that is, it cannot appear in a
FUNCTI ON, SUBROUTI NE, or ENTRY statement.

« A function value cannot be a Cray pointee.
e A Cray pointee cannot be a structure component.
« An equivalence object cannot be a Cray pointee.

Note: Cray pointees can be of type character, but their Cray pointers are different
from other Cray pointers; the two kinds cannot be mixed in the same expression.

The Cray pointer is avariable of type Cray pointer and can appear in a COMVON list
or be adummy argument in a subprogram.

The Cray pointee does not have an address until the value of the Cray pointer
is defined; the pointee is stored starting at the location specified by the pointer.
Any change in the value of a Cray pointer causes subsequent references to the
corresponding pointee to refer to the new location.

Cray pointers can be assigned values in the following ways:
» A Cray pointer can be set as an absolute address. For example:
Q=0

» Cray pointers can have integer expressions added to or subtracted from them and
can be assigned to or from integer variables. For example:

P=Q+ 100

146 S-3901-71

Cray Fortran Language Extensions

(8]

S-3901-71

However, Cray pointers are not integers. For example, assigning a Cray pointer to
areal variable is not allowed.

The (nonstandard) LOC(3i) intrinsic function generates the address of avariable
and can be used to define a Cray pointer, as follows:

P = LOC(X)
The following example uses Cray pointersin the ways just described:

SUBROUTI NE SUB(N)

| NTEGER WORDS

COVMON POOL(100000) , WORDS(1000)

| NTEGER BLK(128), \WORD64

REAL A(1000), B(N), C(100000- N-1000)

PO NTER(PBLK, BLK), (1A A), (1B B), &
(1C,C), (ADDRESS, WORD64)

ADDRESS = LOC(WORDS) + 64* KI ND({ WORDS)

PBLK = LOC(WORDS)

A = LOC(POOL)

IB = | A+ 1000*KI ND(POOL)

IC = IB + NKI ND(POOL)

BLK is an array that is another name for the first 128 words of array WORDS. A is
an array of length 1000; it is another name for the first 1000 elements of POCL. B
follows A and is of length N. Cfollows B. A, B, and C are associated with POOL.
WORD64 is the same as BLK(65) because BLK(1) isat the initial address of
WORDS.

147

Cray Fortran Reference Manual

148

If a pointeeis of anoncharacter data type that is one machine word or longer, the
address stored in a pointer is aword address. If the pointee is of type character or of
adatatype that is less than one word, the address is a byte address. The following
example also uses Cray pointers:

PROGRAM TEST

REAL X(*), Y(*), Z(*), A(10)
PO NTER (P_X, X)

PO NTER (P_Y,Y)

PO NTER (P_Z, 2)

| NTEGER*8 |, J

I USE LOC | NTRINSI C TO SET PO NTER MEMORY LOCATI ONS

| **+ RECOMMENDED USAGE, AS PORTABLE CRAY POl NTERS ***
P X = LOO(A(1))

P Y = LOO(A(2))

I USE POl NTER ARI THVETI C TO DEMONSTRATE COVPI LER AND COWPI LER
| FLAG DI FFERENCES

| +%* USAGE NOT RECOVMENDED, Hi GHLY NON- PORTABLE ***
PZ=PX+1

I
J

P Y
PZ
IF (1 .EQ J) THEN

PRINT *, 'NOT A BYTE- ADDRESSABLE MACHI NE
ELSE

PRI NT *, ' BYTE- ADDRESSABLE MACHI NE'
ENDI F

END

On Cray systems, this prints the following:

Byt e- addr essabl e machi ne

Note: Cray does not recommend the use of pointer arithmetic because it is not
portable.

For purposes of optimization, the compiler assumes that the storage of a pointeeis
never overlaid on the storage of another variable; that is, it assumesthat a pointeeis
not associated with another variable or array. Thiskind of association occurs when a
Cray pointer has two pointees, or when two Cray pointers are given the same value.
Although these practices are sometimes used deliberately (such as for equivalencing
arrays), results can differ depending on whether optimization is turned on or off. You
are responsible for preventing such association. For example:

PO NTER(P, B), (P, O

REAL X, B, C

oc(X)

* O O

L
1
2
NT

T O ®TDT

R

, B

S-3901-71

Cray Fortran Language Extensions [8]

Because B and C have the same pointer, the assignment of 2.0 to C gives the same
value to B; therefore, B will print as 2.0 even though it was assigned 1.0.

Aswith avariable in common storage, a pointee, pointer, or argument to a LOC(3i)
intrinsic function is stored in memory before a call to an external procedure and is
read out of memory at its next reference. The variableis also stored before a RETURN
or END statement of a subprogram.

8.2.3 Cray Character Pointer Type
If apointee is declared as a character type, its Cray pointer is a Cray character pointer.

Restrictions for Cray pointers also apply to Cray character pointers. In addition, the
following restrictions apply:

Whenincludedinan I/O statement i ol i st, aCray character pointer is treated
as an integer.

« If the length of the pointee is explicitly declared (that is, not of an assumed
length), any reference to that pointee uses the explicitly declared length.

» |f apointeeisdeclared with an assumed length (that is, as CHARACTER(*)), the
length of the pointee comes from the associated Cray character pointer.

* A Cray character pointer can be used in arelational operation only with another
Cray character pointer. Such an operation applies only to the character address
and bit offset; the length field is not used.

8.2.4 Boolean Type

A Boolean constant represents the literal constant of a single storage unit. There
are no Boolean variables or arrays, and there is no Boolean type statement. Binary,
octal, and hexadecimal constants are used to represent Boolean values. For more
information about Boolean expressions, see Expressions on page 154.

8.2.5 Alternate Form of ENUMStatement

An enumeration defines the name of a group of related values and the name of each
value within the group. The Cray Fortran compiler allows the following additional
form for enum_def (enumerations):

enum_def_stmt is ENUM [,BIND(CO] [[::]
type alias_name]
oo ENUM [kind selector 1 [[::]
type alias_name]

S-3901-71 149

Cray Fortran Reference Manual

« kind_selector. If it isnot specified, the compiler uses the default integer kind.

e type alias_nameisthe name you assign to the group. This nameistreated asa
type alias name.

8.2.6 TYPEALI AS Statement

A TYPEALI AS statement allows you to define another name for an intrinsic data
type or user-defined data type. Thus, the type alias and the type specification it
diases are interchangeable. Type aliases do not define a new type.

Thisisthe form for type aliases:

type alias stmt is TYPEALI AS :: type alias list

type_alias is type_alias_name => type _spec

This example shows how atype aias can define another name for an intrinsic type, a
user-defined type, and another type dias:

TYPEALI AS :: | NTEGER 64 => | NTEGER(KIND = 8), &
TYPE_ALI AS => TYPE(USER DERI VED_TYPE), &
ALl AS_OF_TYPE_ALI AS => TYPE(TYPE_ALI AS)

I NTEGER(KIND = 8) :: |

TYPE(I NTEGER 64) :: X, Y

TYPE(TYPE_ALIAS) :: S

TYPE(ALI AS OF TYPE ALIAS) :: T

You can use atype alias or the data type it aliases interchangeably. That is, explicit
or implicit declarations that use a type alias have the same effect asif the data type
being aliased was used. For example, the above declarations of |, X, and Y arethe
same. Also, Sand T are the same.

If the type being aliased is a derived type, the type aias name can be used to declare a
structure constructor for the type.

The following are allowed as the type_spec in a TYPEALI AS statement:
« Any intrinsic type defined by the Cray Fortran compiler.
e Any type dlias in the same scoping unit.

e Any derived type in the same scoping unit.

8.3 Data Object Declarations and Specifications

The Cray Fortran compiler accepts the following extensions to declarations.

150 S-3901-71

Cray Fortran Language Extensions [8]

8.3.1 Attribute Specification Statements

8.3.1.1 BOZ Constants in DATA Statements

The Cray Fortran compiler permits a default real object to be initialized with a
BOZ, typeless, or character (used as Hollerith) constant in a DATA statement. BOZ
constants are formatted in binary, octal, or hexadecimal. No conversion of the BOZ
value, typeless value, or character constant takes place.

The Cray Fortran compiler permits an integer object to be initialized with a BOZ,
typeless, or character (used as Hollerith) constant in a type declaration statement. The
Cray Fortran compiler also alows an integer object to be initialized with atypeless or
character (used as Hollerith) constant in a DATA statement.

If the last item in the data_object_list is an array name, the value list can contain
fewer values than the number of elementsin the array. Any element that is not
assigned a value is undefined.

The following aternate forms of BOZ constants are supported.

literal-constant is typeless-constant
typel ess-constant is octal-typeless-constant
octal-typel ess-constant is digit[digit...] B

or " digit[digit...] "O

or ' digit[digit..]"'O
hexadeci mal-typel ess-constant is X' hexdigit [hex-digit... |'

or X" hex-digit [hex-digit...] "

or ' hex-digit [hex-digit...] ' X

or " hex-digit [hex-digit...] " X

8.3.1.2 Attribute Respecification

The Cray Fortran compiler permits an attribute to appear more than once in agiven
type declaration.

S-3901-71 151

Cray Fortran Reference Manual

8.3.1.3 AUTOVATI C Attribute and Statement

The Cray Fortran AUTOVATI C attribute specifies stack-based storage for a variable
or array. Such variables and arrays are undefined upon entering and exiting the
procedure. The following isthe format for the AUTOVATI C specification:

type, AUTOVATI C [, attribute-list] :: entity-list
automati c-stmt is AUTOVATIC [[::]] entity-list
entity-list

For entity-list, specify a variable name or an array declarator.

If an entity-list item is an array, it must be declared with an
explicit-shape-spec with constant bounds. If an entity-listitemisa
pointer, it must be declared with a deferred-shape-spec.

If an entity-list item has the same name as the function in which it is declared, the
entity-list item must be scalar and of type integer, real, logical, complex, or double
precision.

If the entity-list item is a pointer, the AUTOVATI C attribute applies to the pointer
itself and not to any target that may become associated with the pointer.

Subject to the rules governing combinations of attributes, attribute-list can contain
the following:

DI MENSI ON
TARGET

PO NTER
VOLATI LE

The following entities cannot have the AUTOMATI C attribute:
» Pointers or arrays used as function results

e Dummy arguments

» Statement functions

e Automatic array or character data objects

152 S-3901-71

Cray Fortran Language Extensions [8]

An entity-list item cannot have the following characteristics:

It cannot be defined in the scoping unit of a module.
It cannot be a common block item.
It cannot be specified more than once within the same scoping unit.

It cannot be initialized with a DATA statement or with a type declaration
statement.

It cannot also have the SAVE or STATI C attribute.

It cannot be specified as a Cray pointee.

8.3.2 IMPLICIT Statement

8.3.2.1 | MPLI CI T Extensions

The Cray Fortran compiler accepts the | MPLI CI T AUTOMATI C or
| MPLI CI T STATI Csyntax. It is recommended that none of thel MPLI CI T
extensions be used in new code.

8.3.3 Storage Association of Data Objects

8.3.3.1 EQUI VALENCE Statement Extensions

The Cray Fortran compiler allows equivalencing of character data with noncharacter
data. The Fortran standard does not address this. It is recommended that you do
not perform equivalencing in this manner, however, because alignment and padding
differs across platforms, thus rendering your code less portable.

8.3.3.2 COMMON Statement Extensions

The Cray Fortran compiler treats named common blocks and blank common blocks
identically, as follows:

S-3901-71

Variables in blank common and variables in named common blocks can be
initialized.

Named common blocks and blank common are always saved.

Named common blocks of the same name and blank common can be of different
sizesin different scoping units.

153

Cray Fortran Reference Manual

8.4 Expressions and Assignment

8.4.1 Expressions

In Fortran, calculations are specified by writing expressions. Expressions look much
like algebraic formulas in mathematics, particularly when the expressions involve
calculations on numerical values.

Expressions often involve nonnumeric values, such as character strings, logical
values, or structures; these also can be considered to be formulas that involve
nonnumeric quantities rather than numeric ones.

8.4.1.1 Rules for Forming Expressions

The Cray Fortran compiler supports exclusive digunct expressions of the form:

exclusive-digunct-expr

is [exclusive-disunct-expr . XOR.] inclusive-digunct-expr

8.4.1.2 Intrinsic and Defined Operations

Cray supports the following intrinsic operators as extensions:

less greater_op is . LG
or <>
not_op is . N.
and_op is A
or_op is .0
exclusive_digunct_op is . XOR.
or - X

154

The Cray Fortran less than or greater than intrinsic operation is represented

by the <> operator and the . LG keyword. This operation is suggested by

the |EEE standard for floating-point arithmetic, and the Cray Fortran compiler
supports this operator. Only values of type real can appear on either side of the
<>or.LG operators. If the operands are not of the same kind type value, the
compiler converts them to equivalent kind types. The<> and . LG operators
perform aless-than-or-greater-than operation as specified in the IEEE standard for
floating-point arithmetic.

The Cray Fortran compiler allows abbreviations for the logical and masking
operators. The abbreviations. A.,. O.,. N.,and. X. are synonymsfor. AND. ,
.OR.,.NOT. ,and. XOR. , respectively.

S-3901-71

Cray Fortran Language Extensions [8]

The masking of Boolean operators and their abbreviations, which are extensions to
Fortran, can be redefined as defined operators. If you redefine a masking operator,
your definition overrides the intrinsic masking operator definition. See Table 10,
for alist of the operators.

8.4.1.3 Intrinsic Operations

In the following table, the symbols|, R, Z, C, L, B, and P stand for the types integer,
real, complex, character, logical, Boolean, and Cray pointer, respectively. Where
more than one type for X, is given, the type of the result of the operation is given

in the same relative position in the next column. Boolean and Cray pointer types
are extensions of the Fortran standard.

Table 9. Operand Types and Results for Intrinsic Operations

Intrinsic operator Typeof x, Typeof x, Type of result
Unary +, - LR, Z,B, P LR, Z,1,P
Binary +,-,*,/,** I LR, Z,B,P LR, Z,1,P

R LR, Z,B R, R Z R

Z LR, Z Z,72,7

B I,R,B,P I,R,B,P

P l,B, P PPP

(For Cray pointer,
only + and - are

alowed.)
/1 C C C
EQ,==.NE , /= | IR, Z,B, P L,L,L,L,L
R IR, Z,B, P L,L,L,L,L
y IR, Z,B, P L,L,L,L,L
B IR, Z,B, P L,L,L,L,L
P IR, Z,B, P L,L,L,L,L
C C L
.GT.,> .CGE ,>=,.LT.,<,.LE k<= | I,R,B, P L,L,L,L
R I,R, B L,L,L
C C L
P I, P L, L
. LG , <> R R L
. NOT. L L
I,R, B B
S-3901-71 155

Cray Fortran Reference Manual

Intrinsic operator Typeof x, Typeof x, Type of result
.AND. ,. OR ,. EQV.,. NEQV.,. XOR L L L
IR, B IR, B B

The operators. NOT. ,. AND. ,. OR.,. EQV. ,and . XOR. can aso beusedinthe
Cray Fortran compiler's bitwise masking expressions; these are extensions to the
Fortran standard. The result is Boolean (or typeless) and has no kind type parameters.

8.4.1.4 Bitwise Logical Expressions

A bitwise logical expression (also called a masking expression) is an expression in
which alogical operator operates on individual bits within integer, real, Cray pointer,
or Boolean operands, giving a result of type Boolean. Each operand istreated as a
single storage unit. The result is a single storage unit, which is either 32 or 64 bits
depending on the - s option specified during compilation. Boolean values and bitwise
logical expressions use the same operators but are different from logical values and
expressions.

Table 10. Cray Fortran Intrinsic Bitwise Operators and the Allowed Types of
their Operands

Operator category Intrinsic operator Operand types
Bitwise masking (Boolean) .NOT. ,. AND. , . OR., Integer, real, typeless, or Cray pointer.
expressions . XOR., . EQV. ,. NEQV.

Bitwise logical operators can also be written as functions; for example A . AND. B
can bewritten as| AND(A, B) and. NOT. A can be written asNOT(A) .

Table 11 shows which data types can be used together in bitwise logical operations.

Table 11. Data Types in Bitwise Logical Operations

X, x2l I nteger Real Boolean Pointer L ogical Character
Integer Masking Masking Masking Masking Not valid Not valid?
operation, operation, operation, operation,
Boolean Boolean Boolean Boolean
result. result. result. result.

1 X, and x,, represent operands for alogical or bitwise expression, using operators. NOT. , . AND. , . OR.,
. XOR., . NEQV. , and . EQV. .

2 Indicatesthat if the operand is a character operand of 32 or fewer characters, the operand is treated as a
Hollerith constant and is allowed.

156 S-3901-71

Cray Fortran Language Extensions [8]

Xy x21 Integer Real Boolean Pointer L ogical Character
Redl Masking Masking Masking Masking Not valid Not valid?
operation, operation, operation, operation,
Boolean Boolean Boolean Boolean
result. result. result. result.
Boolean Masking Masking Masking Masking Not valid Not valid?
operation, operation, operation, operation,
Boolean Boolean Boolean Boolean
result. result. result. result.
Pointer Masking Masking Masking Masking Not valid Not valid?
operation, operation, operation, operation,
Boolean Boolean Boolean Boolean
result. result. result. result.
Logical Not valid? Not valid? Not valid?2 Not valid? Logical Not valid?
operation
logical result
Character Not valid? Not valid? Not valid? Not valid? Not valid Not valid?
Bitwise logical expressions can be combined with expressions of Boolean or
other types by using arithmetic, relational, and logical operators. Evaluation of an
arithmetic or relational operator processes a bitwise logical expression with no type
conversion. Boolean datais never automatically converted to another type.
A bitwise logical expression performs the indicated logical operation separately
on each bit. The interpretation of individual bits in bitwise multiplication-exprs,
summation-exprs, and general expressions is the same as for logical expressions.
The results of binary 1 and O correspond to the logical results TRUE and FALSE,
respectively, in each of the bit positions. These values are summarized as follows:
.NOT. 1100 1100 1100 1100 1100
=0011 . AND. 1010 .OR 1010 . XOR. 1010 . EQV. 1010
1000 1110 0110 1001

8.4.2 Assignment

S-3901-71

The Cray Fortran compiler supports Boolean and Cray pointer intrinsic assignments.
The Cray Fortran compiler supports type Boolean or BOZ constants in assignment
statements in which the variable is of type integer or real. The bits specified by the
constant are moved into the variable with no type conversion.

157

Cray Fortran Reference Manual

8.5 Execution Control

8.5.1 STOP Code Extension

The STOP statement terminates the program whenever and wherever it is executed.
The STOP statement is defined as follows:

stop-stmt

is STOP [stop_code]

stop-code

is scalar_char_constant

or digit ...

The character constant or list of digits identifying the STOP statement is optional and
is called a stop-code. When the stop-code is a string of digits, leading zeros are not
significant; 10 and 010 are the same stop-code. The Cray Fortran compiler accepts 1
to 80 digits; the standard accepts up to 5 digits.

The stop code is accessible following program termination. The Cray Fortran
compiler sendsit to the standard error file (st der r). The following are examples of
STOP statements:

STCP
STOP ' Error #823'
STCOP 20

8.6 Input/Output Statements

158

The Fortran standard does not specifically describe the implementation of 1/0
processing. This section provides information about processor-dependent areas and
the implementation of the support for I/0.

S-3901-71

Cray Fortran Language Extensions [8]

8.6.1 File Connection

8.6.1.1 OPEN Statement

The OPEN statement specifies the connection properties between the file and the unit,
using keyword specifiers, which are described in this section. Table 12 indicates the
Cray Fortran compiler extension in an OPEN statement.

Table 12. Values for Keyword Specifier Variables in an OPEN Statement

Specifier Possible values Default value
FORME= SYSTEM Unformatted with no record marks

The FORME specifier has the following format:

FORME scalar-char-expr

A file opened with SYSTEMis unformatted and has no record marks.

8.7 Error, End-of-record, and End-of-file Conditions

8.7.1 End-of-file Condition and the END-specifier

8.7.1.1 Multiple End-of-file Records

The file position prior to data transfer depends on the method of access: sequential or
direct. Although the Fortran standard does not allow files that contain an end-of-file
to be positioned after the end-of-file prior to data transfer, the Cray Fortran compiler
permits more than one end-of-file for some file structures.

8.8 Input/Output Editing

8.8.1 Data Edit Descriptors

8.8.1.1 Integer Editing

The Cray Fortran compiler allows w to be zero for the Gedit descriptor, and it permits
w to be omitted for the | , B, O, Z, or Gedit descriptors.

S-3901-71 159

Cray Fortran Reference Manual

The Cray Fortran compiler allows signed binary, octal, or hexadecimal values as
input.

If the minimum digits (m) field is specified, the default field width is increased, if
necessary, to alow for that minimum width.

Note: CLE systems support 1- and 2-byte data types when the - eh compiler

option is enabled. Cray discourages the use of this option because it can severely
degrade performance. For more information about the - eh option, see- d disable
and - e enable on page 25.

8.8.1.2 Real Editing

The Cray Fortran compiler allows the use of B, O, and Z edit descriptors of REAL
dataitems. The Cray Fortran compiler accepts the D[w. dEe] edit descriptor.

The Cray Fortran compiler accepts the ZERO W DTH_PREC! SI ON environment
variable, which can be used to modify the default size of the width wfield.

This environment variable is examined only upon program startup. Changing

the value of the environment variable during program execution has no effect.

For more information about the ZERO W DTH_PRECI SI ON environment, see
ZERO W DTH_PRECI SI ON Environment Variable on page 78.

The Cray Fortran compiler allows w to be zero or omitted for the D, E, EN, ES, or
G edit descriptors.

The Cray Fortran compiler does not restrict the use of Ew. d and Dw. d to an
exponent less than or equal to 999. The Ew. dEe form must be used.

Table 13. Default Fractional and Exponent Digits

Data size and representation w
4-byte (32-bit) IEEE 17
8-byte (64-bit) IEEE 26 17

8.8.1.3 Logical Editing

The Cray Fortran compiler allows w to be zero or omitted on the L or G edit
descriptors.

8.8.1.4 Character Editing

160

The Cray Fortran compiler allows w to be zero or omitted on the G edit descriptor.

S-3901-71

Cray Fortran Language Extensions [8]

8.8.2 Control Edit Descriptors

8.8.2.1 Q Editing

The Cray Fortran supports the Q edit descriptor. The Q edit descriptor is used to
determine the number of characters remaining in the input record. It has the following
format:

Q

When a Qedit descriptor is encountered during execution of an input statement, the
corresponding input list item must be of type integer. Interpretation of the Q edit
descriptor causes the input list item to be defined with a value that represents the
number of characters remaining to be read in the formatted record.

For example, if ¢ isthe character position within the current record of the next
character to be read, and the record consists of n characters, then the item is defined
with the following value MAX(n- c+1, 0) .

If no characters have yet been read, then the item is defined as n (the length of the
record). If all the characters of the record have been read (c>n), then the item is
defined as zero.

The Qedit descriptor must not be encountered during the execution of an output
Statement.

The following example code uses Q on inpult:

| NTEGER N
CHARACTER LI NE * 80
READ (*, FMI='(QA') N, LINE(1:N)

8.8.3 List-directed Formatting

8.8.3.1 List-directed Input

S-3901-71

Input values are generally accepted as list-directed input if they are the same as those
required for explicit formatting with an edit descriptor. The exceptions are as follows:

* Whenthedatalist item is of type integer, the constant must be of aform suitable
for the | edit descriptor. The Cray Fortran compiler permits binary, octal, and
hexadecimal based valuesin alist-directed input record to correspond to | edit
descriptors.

161

Cray Fortran Reference Manual

8.8.4 Namelist Formatting

8.8.4.1 Namelist Extensions

The Cray Fortran compiler has extended the namelist feature. The following
additional rules govern namelist processing:

* Anampersand (&) or dollar sign ($) can precede the namelist group name or
terminate namelist group input. If an ampersand precedes the namelist group
name, either the slash (/) or the ampersand must terminate the namelist group
input. If the dollar sign precedes the namelist group name, either the slash or the
dollar sign must terminate the namelist group input.

e Octa and hexadecimal constants are allowed as input to integer and
single-precision real namelist group items. An error is generated if octal
and hexadecimal constants are specified as input to character, complex, or
double-precision real namelist group items.

Octal constants must be of the following form:

0'123"
O 123

0" 123"

o' 123

Hexadecimal constants must be of the following form:
- Z"1l1la3"
- Z la3
- z"la3"

- z'1la3'

8.8.5 1/0 Editing

Usually, datais stored in memory as the values of variablesin some binary form. On
the other hand, formatted data recordsin afile consist of characters. Thus, when data
is read from aformatted record, it must be converted from characters to the internal
representation. When data is written to a formatted record, it must be converted from
the internal representation into a string of characters.

162 S-3901-71

Cray Fortran Language Extensions [8]

Table 14 and Table 15, list the control and data edit descriptor extensions supported
by the Cray Fortran compiler and provide a brief description of each.

Table 14. Summary of Control Edit Descriptors

Descriptor Description

$or\ Suppress carriage control

Table 15. Summary of Data Edit Descriptors

Descriptor Description

Q Return number of characters left in record

For more information about the Q edit descriptor, see Q Editing on page 161.

The following tables show the use of the Cray Fortran compiler's edit descriptors with
al intrinsic data types. In these tables:

* NA indicatesinvalid usage that is not allowed.
* |,Oindicates that usage is allowed for both input and output.
* | indicateslegal usage for input only.

Table 16. Default Compatibility Between 1/O List Data Types and Data Edit
Descriptors

Data types Q Z R o L I G F ES EN E D B A
Integer I O 1,0 1,0 NA [,O I, 0 NA NA NA NA NA O 10O
Redl NA 1O 1O IO NA NA O 10 IO 10 1,0 IO 1,0 10
Complex NA 1O 1O IO NA NA O 10 IO 10 1,0 1,0 1,0 10
Logica NA 1,0 1,0 I,O 1,0 NA [[O NA NA NA NA NA 1,0 I0O
Character NA NA NA NA NA NA [[O NA NA NA NA NA NA IO
S-3901-71 163

Cray Fortran Reference Manual

Table 17 shows the restrictions for the various data types that are allowed when you
set the FORMAT_TYPE_CHECKI NG environment variable to RELAXED. Not all data
edit descriptors support all data sizes, for example, you cannot read/write a 16-byte

real variable with an | edit descriptor.

Table 17. RELAXED Compatibility Between Data Types and Data Edit Descriptors

Data types Q z R O L I G F ES EN E D B A
Integer I IO 10 10 1,0 1,0 1,0 1,0 1,0 I, 1,0 NA 10 10
Real NA 1O 10 10 10 IO 10 10 10 1,0 I, 1,0 1,0 10
Complex NA 1,0 10O 1O NA NA 1O IO 10 1,0 1,0 1,0 1,0 |0
Logica NA 10 10 10 10 1,0 1,0 1,0 1,0 1,0 1,0 NA 1,0 10
Character NA NA NA NA NA NA 1,0 NA NA NA NA NA NA IO
Table 18 shows the restrictions for the various data types that are allowed when you
set the FORVAT _TYPE_CHECKI NG environment variableto STRI CT77.
Table 18. STRI CT77 Compatibility Between Data Types and Data Edit
Descriptors
Data types Q zZz R O L 1 G F ES EN E D B A
Integer NA 1,0 NA 1,0 NA 1,0 NA NA NA NA NA NA 1,0 NA
Real NA NA NA NA NA NA 1,0 I, 0O NA NA 1,0 I,LO NA NA
Complex NA NA NA NA NA NA 1,0 I, 0O NA NA 1,0 I,LO NA NA
Logica NA NA NA NA [, O NA NA NA NA NA NA NA NA NA
Character NA NA NA NA NA NA NA NA NA NA NA NA NA IO
Table 19 shows the restrictions for the various data types that are allowed when
you set the FORVMAT_TYPE CHECKI NG environment variable to STRI CT90 or
STRI CT95.
Table 19. STRI CT90 and STRI CT95 Compatibility Between Data Types and Data
Edit Descriptors
Data types Q zZz R O L 1 G F ES EN E D B A
Integer NA 1,0 NA 1,0 NA 1,0 1,0 NA NA NA NA NA 1,0 NA
Real NA NA NA NA NA NA 1,0 1,0 1,0 1,0 1,0 I, O NA NA
Complex NA NA NA NA NA NA 1,0 1,0 1,0 1,0 1,0 I, O NA NA

164

S-3901-71

Cray Fortran Language Extensions [8]

Data types Q 4 R @) L I G F ES EN E D B A
Logica NA NA NA NA 1,0 NA 1,0 NA NA NA NA NA NA NA
Character NA NA NA NA NA NA 1,0 NA NA NA NA NA NA IO

8.9 Program Units

8.9.1 Main Program

8.9.1.1 Program Statement Extension

The Cray Fortran compiler supports the use of a parenthesized list of args at the end
of aprogram statement. The compiler ignores any args specified after program-name.

8.9.2 Block Data Program Units

8.9.2.1 Block Data Program Unit Extension

The Cray Fortran compiler permits named common blocks to appear in more than one
block data program unit.

8.10 Procedures

8.10.1 Procedure Interface

8.10.1.1 Interface Duplication

The Cray Fortran compiler allows you to specify an interface body for the program
unit being compiled if the interface body matches the program unit definition.

8.10.2 Procedure Definition

8.10.2.1 Recursive Function Extension

The Cray Fortran compiler allows direct recursion for functions that do not specify a
RESULT clause on the FUNCTI ON statement.

8.10.2.2 Empty CONTAI NS Sections

The Cray Fortran compiler allows a CONTAI NS statement with no internal or module
procedure following. Thisis proposed for the 2008 Fortran standard.

S-3901-71 165

Cray Fortran Reference Manual

8.11 Intrinsic Procedures and Modules

8.11.1 Standard Generic Intrinsic Procedures

8.11.1.1 Intrinsic Procedures

166

The Cray Fortran compiler has implemented intrinsic procedures in addition to

the ones required by the standard. These procedures have the status of intrinsic
procedures, but programs that use them may not be portable. It is recommended
that such procedures be declared | NTRI NSI Cto allow other processors to diaghose
whether or not they are intrinsic for those processors.

The nonstandard intrinsic procedures supported by the Cray Fortran compiler that
are not obsolete are summarized in the following list. For more information about a
particular procedure, see its man page.

ACOSD Arccosine, value in degrees
ADD_CARRY@ Add vectors with carry
ADD_CARRY_S@

Add scalars with carry
AMO AADD Atomic memory add
AMO_AFADD Atomic memory add, return old
AMO_AAX Atomic memory logicals
AMO_AFAX Atomic memory logicals, return old
AMO_ACSWAP Atomic compare and swap

ASI ND Arcsine, value in degrees
ATAND Arctangent, value in degrees
ATAND2 Arctangent, value in degrees
Cosbh Cosine, argument in degrees
cor Cotangent

DSHI FTL Double word left shift (Proposed Fortran 2008 function)
DSHI FTR Double word right shift (Proposed Fortran 2008 function)
EXIT Program termination

FREE Free Cray pointee memory

S-3901-71

Cray Fortran Language Extensions [8]

GET_BORRON@

Get vector borrow bits
GET_BORROW S@

Get scalar borrow bit
GSYNC Compl ete outstanding memory references
| BCHNG Reverse bit within aword
| LEN Length in bits of an integer
| NT_MJULT_UPPER

Upper bits of integer product
LEADZ Number of leading O bits (Proposed Fortran 2008 function)
LCC Address of argument
MarLR Clears BML bhit
Ma.D Bit matrix load
Ma.DMX Combined bit matrix load and multiply
MavoR Bit matrix inclusive or
MaviX Bit matrix multiply
Ma@JL Bit matrix unload
MALLOC Allocate Cray pointee memory
MASK Creates a bit mask in aword
NUMARG Number of argumentsin a call
NUM_| MAGES Number of executing images (Proposed Fortran 2008 function)
POPCNT Number of 1 bitsin aword (Proposed Fortran 2008 function)
POPPAR XOR reduction of bitsin aword (Proposed Fortran 2008 function)
QPRCD Quad precision product
SET_BORROA@

Set vector borrow bits
SET_BORROW S@

Set scalar borrow bits
SET_CARRY@ Set vector carry bits

S-3901-71 167

Cray Fortran Reference Manual

168

SET_CARRY_S@

Set scalar carry bits
SHI FTA Arithmetic right shift (Proposed Fortran 2008 function)
SHI FTL Left shift, zero fill (Proposed Fortran 2008 function)
SHI FTR Right shift, zero fill (Proposed Fortran 2008 function)
SI ND Sin, argument in degrees
S| ZEOF Size of argument in bytes
SUB_BORROW@

Subtract vector with borrow
SUB_BORROW S@
Subtract scalar with borrow
SYNC | MAGES
Synchronize indicated images
TAND Tangent, argument in degrees
TH S_I| MAGE Image number of executing image (Proposed Fortran 2008 function)
TRAI LZ Number of trailing O bits (Proposed Fortran 2008 function)

All Cray Fortran intrinsic procedures are described in man pages that can be accessed
online through the man(1) command.

Many intrinsic procedures have both a vector and a scalar version. If avector version
of anintrinsic procedure exists, and theintrinsic is called within a vectorizable loop,
the compiler uses the vector version of the intrinsic. For information about which
intrinsic procedures vectorize, seei ntro_i nt ri n(3i).

S-3901-71

Cray Fortran Language Extensions [8]

8.12 Exceptions and IEEE Arithmetic

8.12.1 The Exceptions

8.12.1.1 IEEE Intrinsic Module Extensions

The intrinsic module | EEE_EXCEPTI ONS supplied with the Cray Fortran
compiler contains three named constants in addition to those specified by the
standard. These are of type | EEE_STATUS_TYPE and can be used as arguments
tothel EEE_SET_ STATUS subroutine. Their definitions correspond to common
combinations of settings and allow for simple and fast changes to the IEEE mode
settings. The constants are:

Table 20. Cray Fortran IEEE Intrinsic Module Extensions

Effect of CALL | EEE_SET_STATUS
Name (Name)

i eee_cri _nostop_node .
e Clearsall currently set exception flags

» Disableshalting for all exceptions
» Enables setting of all exception flags

e Setsrounding mode to round to_nearest

i eee_cri _defaul t _node .
- = - e Clearsal currently set exception flags

» Enables halting for overflow,
divide_by_zero, and invalid

« Disables halting for underflow and inexact
» Enables setting of all exception flags

e Setsrounding mode to round_to_nearest

8.13 Interoperability with C

8.13.1 Interoperability Between Fortran and C Entities

8.13.1.1 BI ND(C) Syntax

The proc-language-binding-spec specification allows Fortran programs to
interoperate with C objects. The optional commas in SUBROUTI NE narnre() ,

Bl ND(C) and FUNCTI ON nane(), BIND(C) are Cray extensionsto the Fortran
standard.

S-3901-71 169

Cray Fortran Reference Manual

8.14 Coarrays

170

The Cray Fortran compiler implements coarrays as a mechanism for data exchange in
paralel programs.

Note: The Cray Fortran Compiler 7.1 release supports the proposed Fortran
2008 standard. The Fortran 2008 standard has not been formally adopted at this
time. Fortran 2008 feature implementations are based on the specifications in the
Committee Draft (ISO/IEC SC22/WG5/N1776) and are subject to modification in
the final standard.

Data passing has proven itself to be an effective method for programming
single-program-multiple-data (SPMD) parallel computation. Its chief advantage over
message passing is lower latency for data transfers, which leads to better scalability of
paralel applications. coarrays are a syntactic extension to the Fortran Language that
offers a method for programming data passing.

Data passing can also be accomplished by using the shared memory (SHMEM)
library routines. Using SHMEM, the program transfers data from an object on one
processing element to an object on another via subroutine calls. Thistechniqueis
often referred to as one-sided communication.

Coarrays provide an alternative syntax for specifying these transfers. With coarrays,
the concept of a processing element is replaced by the concept of an image. When
data objects are declared as coarrays, the corresponding coarrays on different images
can be referenced or defined in a fashion similar to the way in which arrays are
referenced or defined in Fortran. Thisis done by adding additional dimensions, or
co-dimensions, within brackets ([]) to an object's declarations and references.
These extra dimensions express the image upon which the object resides.

Coarrays offer the following advantages over SHMEM:

» Coarrays are syntax-based, so programs that use them can be analyzed and
optimized by the compiler. This offers greater opportunity for hiding data transfer
latency.

« Coarray syntax can eliminate the need to create and copy datato local temporary
arrays.

» Coarrays express data transfer naturally through the syntax of the language,
making the code more readable and maintainable.

» The unique bracket syntax allows you to scan for and to identify communication
in a program easily.
Consider the following SHMEM code fragment from a finite differencing a gorithm:

CALL SHVEM REAL_GET(T1, U NROW LEFT)
CALL SHVEM REAL_GET(T2, U, NROW RIGHT)
NU(1: NROW = NU(1: NROW + T1(1: NROW + T2(1: NROW

S-3901-71

Cray Fortran Language Extensions [8]

Coarrays can be used to express this fragment simply as:
NU(1: NROW = NU(1: NROW + U(1: NROW[LEFT] + U(1: NROW[RI GHT]

Notice that the resulting code is more concise, easier to read, and that the copiesto
local temporary objects T1 and T2 are eliminated.

Coarrays can interoperate with the other message passing and data passing models.
This interoperability allows you to introduce coarrays gradualy into codes that
presently use the Message Passing Interface (MPI) or SHMEM.

For more information about using coarrays, see ISO/IEC JTCL/SC22/\W65
N1747, "Coarrays in the Next Fortran Standard,” by John

Reid. This document can be accessed at the following location:
ftp://ftp.nag.co.uk/sc22wg5/N1701-N1750/N1747.pdf.

The nonstandard statements supported by Cray Fortran are summarized in thislist.
CRI TI CAL Begin critical region
END CRI TI CAL
End of acritical region
SYNC ALL Synchronize al images
SYNC MEMORY
Memory barrier (same as GSYNC)

8.15 Compiling and Executing Programs Containing Coarrays

There are various commands, tools, and products available in the programming
environment to use for compiling and executing programs containing coarrays.

8.15.1 ft n and apr un Options Affecting Coarrays

The-h caf compiler option on the f t n command line must be specified in order
for coarray syntax to be recognized and translated. Otherwise, the coarray syntax
generates ERROR messages.

Upon execution of an a. out file that has been compiled and loaded with the - h
caf option, animageis created and executed on every processing element assigned
to thejob. Images 1 through NUM | MAGES are assigned to processing elements O
through N$PES- 1, consecutively.

You can set the number of processing elements assigned to ajob at compile time

by specifying the - X option on the f t n command. The number of processing
elements can also be set at run time by executing the a. out file by using the apr un
command with the - n option specified.

S-3901-71 171

ftp://ftp.nag.co.uk/sc22wg5/N1701-N1750/N1747.pdf

Cray Fortran Reference Manual

Bounds checking is performed by specifying the - Rb option on the f t n command
line. Thisfeatureis not implemented for co-dimensions of coarrays.

For more information about the f t n and apr un commands, see the f t n(1) and
apr un(1l) man pages.

8.15.2 Using the CrayTools Tool Set with Coarray Programs

The CrayTools tool set, which includes TotalView, and Cray performance analyzer
tool (CrayPat), does not contain specia support for coarrays and does not support the
bracket notation. In most cases, however, these tools can still be used effectively to
analyze programs containing coarrays.

The following sections discuss issues related to the interaction of these tools with
programs containing coarrays.

8.15.2.1 Debugging Programs Containing Coarrays (Deferred implementation)

Thet ot al vi ewdebugger does not support the bracket notation. Coarrays generaly
appear as their corresponding local object with co-dimensions stripped off.

Coarray data can be viewed and referenced by switching thet ot al vi ewPr ocess
window to the processing element corresponding to the desired image and accessing
the coarray with local references.

8.15.2.2 Analyzing Coarray Program Performance

To the CrayTools performance tools, which include CrayPat, coarrays generally
appear as their corresponding local object with co-dimensions stripped off.

f Caution: Referencesto coarrays on different images appear to the performance
tools aslocal data references. This may skew the remote reference statistics of
these tools.

8.15.3 Interoperating with Other Message Passing and Data Passing
Models

Coarrays can interoperate with all other message and data passing models: MPI
and SHMEM. This allows you to introduce coarrays into existing application codes
incrementally.

These models are implemented through procedure calls, so the language interaction
between coarrays and these modelsis well defined.

Caution: MPI and SHMEM generally use processing element numbers, which

A start at zero, but the coarray model generally deals with image numbers, which start
at one. For information about the mapping between processing elements and image
numbers, seef t n and apr un Options Affecting Coarrays on page 171.

172 S-3901-71

Cray Fortran Language Extensions [8]

Coarrays are symmetric for the purposes of SHMEM programming. Pointersin
coarrays of derived type, however, may not necessarily point to symmetric data.

For more information about the other message passing and data passing models, see
the following man pages.

e intro_npi(3)

e intro_shnem@)

8.15.4 Optimizing Programs with Coarrays

Programs containing coarrays benefit from all the usual steps you can take to improve
runtime performance of code that runs on a single image.

L oops containing references to coarrays can and should be vectorized. If a coarray
vector memory reference references multiple images, you may receive a"No Forward
Progress' exception. In this case, you should try vectorizing along a different
dimension of the coarray or running the application in accelerated mode (apr un
-A).

8.16 Submodules

As of release 7.1, the Cray Fortran Compiler fully supports submodules, which
extend specifications and definitions to other program units by use association and
stand in atree-like relationship to other Fortran modules and submodules. There are
no known differences between the Cray implementation and the proposed standard.

Note: The Cray Fortran Compiler 7.1 release supports the proposed Fortran
2008 standard. The Fortran 2008 standard has not been formally adopted at this
time. Fortran 2008 feature implementations are based on the specifications in the
Committee Draft (ISO/IEC SC22/WG5/N1776) and are subject to modification in
the final standard.

S-3901-71 173

Cray Fortran Reference Manual

174 S-3901-71

Obsolete Features [9]

The Cray Fortran compiler supports legacy features to allow the continued use of
existing codes. In general, these features should not be used in new codes. The
obsolete features are divided into two groups. Thefirst is the set of features identified
in Annex B of the Fortran standard as deleted. These were part of the Fortran
language but their usage is explicitly discouraged in new codes. The second group
isthe set of legacy extensions supported in the Cray compiler for which preferred
aternatives now exist. The obsolete features and their preferred alternatives are

listed in Table 21.

Table 21. Obsolete Features and Preferred Alternatives

Obsolete feature

Preferred alternative

| MPLI CI' T UNDEFI NED
Type statements with * n

BYTE data type

DOUBLE COWMPLEX statement
STATI C attribute and statement
Slash data initialization

DATA statement features
Hollerith data

PAUSE statement

ASSI GN, assigned GOTO statements and assigned
format specifiers

Two-branch | F statements

Real and double precision DOvariables
Nested loop termination

Branching into a block

ENCODE and DECODE statements

BUFFER | Nand BUFFER OUT statements
Asterisk character constant delimiters

Negative-values X descriptor

S-3901-71

| MPLI CI' T NONE

Type statements with KI ND= parameters

| NTEGER(KI ND=1)

COVPLEX statement with KI ND parameter
SAVE attribute and statement

Standard initialization syntax

Standard conforming DATA statements
Character data

READ statement

Standard branching constructs

| F construct or statement

Integer DO variables

Separate END DO statements
Restructure code

VRl TE and READ with internal file
Asynchronous |/O statements

Use standard character delimiters

TL descriptor

175

Cray Fortran Reference Manual

Obsolete feature Preferred alternative

A descriptor used for noncharacter conventional data Character type and other conventional matchings of

and R descriptor data and descriptors

H edit descriptor Character constants

Obsolete intrinsic procedures For list and replacements, see Obsolete Intrinsic
Procedures on page 193

Initialization using long strings Replace the numeric target with a character item.
Replace a Hollerith constant with a character
constant

9.1 | MPLI G T UNDEFI NED

The Cray Fortran compiler acceptsthe | MPLI CI T UNDEFI NED statement. It is
equivaenttothel MPLI CI T NONE statement.

9.2 Type Statement with *n

The Cray Fortran compiler defines the following additional forms of
type declaration_stn:

type_spec IS | NTEGER* length_value
or REAL* length_value
or DOUBLE PRECI SI ON* length_value
or COVPLEX* length_value
or LOG CAL* length_value

» length-value is the size of the data object in bytes.

Data type declarations that include the data length are outmoded. The Cray Fortran
compiler recognizes this usage in type statements, | MPLI Cl T statements, and
FUNCTI ON statements, mapping these numbers onto kind values appropriate for
the target machine.

9.3 BYTE Data Type

The BYTE statement and data type declares a 1-byte value. This datatypeis
equivalent to the | NTEGER(KI ND=1) and | NTEGER* 1 declarations.

176 S-3901-71

Obsolete Features [9]

9.4 DOUBLE COWPLEX Statement

The DOUBLE COMPLEX statement is used to declare an item to be of type double
complex. The format for the DOUBLE COVPLEX statement is as follows:

DOUBLE COVPLEX [, attributellist ::] entity-list
Items declared as DOUBLE COMPLEX contain two double precision entities.
When the - dp option isin effect, double complex entities are affected as follows:

e Thenonstandard DOUBLE COMPLEX declaration is treated as a single-precision
complex type.

* Double precision intrinsic procedures are changed to the corresponding
single-precision intrinsic procedures.

The - ep or - dp specification is used for al source files compiled with asingle
invocation of the Cray Fortran compiler command. If amodule is compiled separately
from a program unit that uses the module, they both shall be compiled with the same
- ep or - dp specification.

9.5 STATI CAttribute and Statement

The STATI C attribute and statement provides the same effect as the SAVE attribute
and statement. Variables with the Cray Fortran STATI C attribute retain their value
and their definition, association, and allocation status after the subprogram in which
they are declared completes execution. Variables without this attribute cannot be
depended on to retain its value and status, although the Cray Fortran compiler treats
named common blocks as if they had this attribute. This attribute should aways be
specified for an object or the object's common named block, if it is necessary for
the object to retain its value and status.

In Cray's implementation, the system retains the value of an object that isin amodule
whether or not the STATI C specifier is used.

Objects declared in recursive subprograms can be given the attribute. Such objects are
shared by all instances of the subprogram.

Any object that is data initialized (in a DATA statement or a type declaration
statement) has the STATI C attribute by default.

Thefollowing is aformat for atype declaration statement with the attribute:

type, STATIC [, attribute-list] :: entity-decl-list
static-stmt is STATIC[[::] datic-entity-list]
static-entity is data-object-name
or / common-block-name /
S-3901-71 177

Cray Fortran Reference Manual

178

A statement without an entity list is treated as though it contained the names of all
items that could be saved in the scoping unit. The Cray Fortran compiler allows you
to insert multiple statements without entity lists in a scoping unit.

If STATI Cappearsin amain program as an attribute or a statement, it has no effect.
The following objects must not be saved:

e A procedure

* A function result

e A dummy argument

* A named constant

e An automatic data object

e An object in acommon block

e A namelist group

A variable in a common block cannot be saved individually; the entire named
common block must be saved if you want any variablesin it to be saved.

A named common block saved in one scoping unit of a program is saved throughout
the program.

If a named common block is specified in a main program, it is available to any
scoping unit of the program that specifies the named common block; it does not
need to be saved.

The statement also confers the attribute. It is subject to the same rules and restrictions
as the attribute.

The following example shows an entity-oriented declaration:

CHARACTER(LEN
CHARACTER(LEN

12), SAVE :: NAME
12), STATIC :: NAME

The following example shows an attribute-oriented declaration:

CHARACTER* 12 NAME
STATI C NAME I Use SAVE OR STATIC, but not both on the sane nane

The following example shows saving objects and named common blocks:
STATIC A, B, /BLOCKA/, C, /BLOCKB/

S-3901-71

Obsolete Features [9]

9.6 Slash Data Initialization

The Fortran type declaration statements provide a means for data initialization. For
example, the following two methods are standard means for initializing integer data:

* Method 1:
INTEGER :: |=3
* Method 2:
| NTEGER |
DATA | /3/

The Cray Fortran compiler supports an additional method for each datatype. The
following example shows the additional, nonstandard method, used to define integer
data:

e Method 3:
INTEGER [::]1 | [/3/

9.7 DATA Statement Features
The DATA statement has the following outmoded features:

* A constant need not exist for each element of a whole array named in a
data-stmt-object-list if the array isthe last item in thelist.

e A Hollerith or character constant can initialize more than one element of an
integer or single-precision rea array if the array is specified without subscripts.

Example 1: If the- s def aul t 32 compiler option is used (default), an array
isdeclared by | NTEGER A(2) , the following DATA statements have the same
effect:

DATA A /'12345678'/
DATA A /'1234','5678'/

Example 2: If the-s def aul t 64 compiler option is specified, an array is
declared by | NTEGER A(2) , the following DATA statements have the same
effect:

DATA A /'1234567890123456' /
DATA A /'12345678',' 90123456' /

An integer or single-precision real array can be defined in the same way in a
DATA implied-DO statement.

9.8 Hollerith Data

Before the character data type was added to the Fortran 77 standard, Hollerith data
provided a method of supplying character data.

S-3901-71 179

Cray Fortran Reference Manual

9.8.1 Hollerith Constants

A Hollerith constant is expressed in one of three forms. The first of theseis specified
as anonzero integer constant followed by the letter H, L, or R and as many characters
as equal the value of the integer constant. The second form of Hollerith constant
specification delimits the character sequence between a pair of apostrophes followed
by the letter H, L, or R. The third form is like the second, except that quotation marks
replace apostrophes. For example:

Char act er sequence: ABC 12
Form 1: 6HABC 12
Form 2: "ABC 12'H
Form 3: "ABC 12"H

Two adjacent apostrophes or quotation marks appearing between delimiting
apostrophes or quotation marks are interpreted and counted by the compiler as

a single apostrophe or quotation mark within the sequence. Thus, the sequence

DON T USE "*" would be specified with apostrophe delimitersas' DON' ' T USE
"*"' H and with quotation mark delimitersas”" DON' T USE ""*"""H.

Each character of a Hollerith constant is represented internally by an 8-bit code, with
up to 32 such codes alowed. Thislimit corresponds to the size of the largest numeric
type, COVPLEX(KI ND = 16) . The ultimate size and makeup of the Hollerith data
depends on the context. If the Hollerith constant is larger than the size of the type
implied by context, the constant is truncated to the appropriate size. If the Hollerith
constant is smaller than the size of the type implied by context, the constant is padded
with a character dependent on the Hollerith indicator. When an H Hollerith indicator
is used, the truncation and padding is done on the right end of the constant. The pad
character is the blank character code (20).

Null codes can be produced in place of blank codes by substituting the letter L for
the letter Hin the Hollerith forms described above. The truncation and padding

is also done on the right end of the constant, with the null character code (00) as
the pad character.

Using the letter Rinstead of the letter H as the Hollerith indicator means truncation
and padding is done on the left end of the constant with the null character code (00)
used as the pad character.

All of the following Hollerith constants yield the same Hollerith constant and differ
only in specifying the content and placement of the unused portion of the single
64-bit entity containing the constant:

Hollerith Internal byte, beginning on bit:

constant 0 8 16 24 32 40 48 56

6 HABCDEF A B C D E F 204 20,4

' ABCDEF' H A B C D E F 20,, 20,
180 S-3901-71

Obsolete Features [9]

Hollerith Internal byte, beginning on bit:

constant 0 16 24 32 40 48 56

" ABCDEF" H A B C D E F 20,4 204
6 LABCDEF A B C D E F 00 00

' ABCDEF' L A B C D E F 00 00

" ABCDEF" L A B C D E F 00 00
6 RABCDEF 00 00 A B C D E

' ABCDEF' R 00 00 A B C D E

" ABCDEF" R 00 00 A B C D E

A Hollerith constant is limited to 32 characters except when specified in a CALL
statement, a function argument list, or a DATA statement. An al-zero computer word
follows the last word containing a Hollerith constant specified as an actual argument
in an argument list.

A character constant of 32 or fewer charactersis treated asif it were a Hollerith
constant in situations where a character constant is not allowed by the standard but a
Hollerith constant is allowed by the Cray Fortran compiler. If the character constant
appearsin a DATA statement value list, it can be longer than 32 characters.

9.8.2 Hollerith Values

A Hollerith value is a Hollerith constant or a variable that contains Hollerith data. A
Hollerith value is limited to 32 characters.

A Hollerith value can be used in any operation in which a numeric constant can be
used. It can also appear on the right-hand side of an assignment statement in which
anumeric constant can be used. It istruncated or padded to be the correct size for
the type implied by the context.

9.8.3 Hollerith Relational Expressions

S-3901-71

Used with arelational operator, the Hollerith value e, isless than e, if its value
precedes the value of e, in the collating sequence and is greater if its value follows
the value of e, in the collating sequence.

181

Cray Fortran Reference Manual

The following examples are evaluated as true if the integer variable LOCK contains
the Hollerith characters K, E, and Y in that order and | eft-justified with five trailing
blank character codes:

3HKEY. EQ LOCK

" KEY' . EQ LOCK
LOCK. EQ LOCK

" KEY1' . GT. LOCK
' KEYO' H. GT. LOCK

9.9 PAUSE Statement

Execution of a PAUSE statement requires operator or system-specific intervention

to resume execution. In most cases, the same functionality can be achieved as
effectively and in amore portable way with the use of an appropriate READ statement
that awaits some input data.

The execution of the PAUSE statement suspends the execution of a program. Thisis
now redundant, because a WRI TE statement can be used to send a message to any
device, and a READ statement can be used to wait for and receive a message from the
same device.

The PAUSE statement is defined as follows:

pause-stmt

is PAUSE [stop-code]

The character constant or list of digitsidentifying the PAUSE statement is called the
stop-code because it follows the same rules as those for the STOP statement's stop
code. The stop code is accessible following program suspension. The Cray Fortran
compiler sends the stop-code to the standard error file (st der r). The following are
examples of PAUSE statements:

PAUSE

PAUSE ' Wit #823'
PAUSE 100

9.10 ASSI G\, Assigned GO TO Statements, and Assigned
Format Specifiers

182

The ASSI GN statement assigns a statement label to an integer variable. During
program execution, the variable can be assigned |abels of branch target statements,
providing a dynamic branching capability in a program. The unsatisfactory property
of these statements is that the integer variable name can be used to hold both alabel
and an ordinary integer value, leading to errors that can be hard to discover and
programs that can be difficult to read.

S-3901-71

Obsolete Features [9]

A frequent use of the ASSI GN statement and assigned GO TO statement is to
simulate internal procedures, using the ASSI GN statement to record the return point
after areusable block of code has completed. The internal procedure mechanism

of Fortran now provides this capability.

A second use of the ASSI GN statement is to simulate dynamic format specifications
by assigning labels corresponding to different format statements to an integer variable
and using this variable in |/O statements as a format specifier. This use can be
accomplished in a clearer way by using character strings as format specifications.
Thus, it is no longer necessary to use either the ASSI GN statement or the assigned
GO TO statement.

Execution of an ASSI GN statement causes the variable in the statement to become
defined with a statement label value.

When a numeric storage unit becomes defined, all associated humeric storage units of
the same type become defined. Variables associated with the variable in an ASSI GN
statement, however, become undefined as integers when the ASSI GN statement is
executed. When an entity of double precision real type becomes defined, al totally
associated entities of double precision real type become defined.

Execution of an ASSI GN statement causes the variable in the statement to become
undefined as an integer. Variables that are associated with the variable also become
undefined.

9.10.1 Form of the ASSI GNand Assigned GO TOStatements

Execution of an ASSI GN statement assigns a label to an integer variable.
Subsequently, this value can be used by an assigned GO TO statement or by an |/O
statement to reference a FORVAT statement. The ASSI GN statement is defined as
follows:

assign-stmt

is ASS| GN label TO scalar-int-variable

S-3901-71

The term default integer type in this section means that the integer variable
shall occupy afull word in order to be able to hold the address of the statement
label. Programs that contain an ASSI GN statement and are compiled with

-s defaul t 32 shall ensure that the scalar-int-variable is declared as

| NTEGER(KI ND=8) . This ensures that it occupies afull word.

The variable shall be a named variable of default integer type. It shall not be an array
element, an integer component of a structure, or an object of nondefault integer type.

The label shall be the label of a branch target statement or the label of a FORMAT
statement in the same scoping unit as the ASSI GN statement.

When defined with an integer value, the integer variable cannot be used as alabel.

183

Cray Fortran Reference Manual

When assigned a label, the integer variable cannot be used as anything other than a
label.

When the integer variable is used in an assigned GO TO statement, it shall be
assigned a label.

As the following example shows, the variable can be redefined during program
execution with either another label or an integer value:

ASSI GN 100 TO K

Execution of the assigned GO TO statement causes atransfer of control to the branch
target statement with the label that had previously been assigned to the integer
variable.

The assigned GO TOstatement is defined as follows:

assigned-goto-stmt is GO TO scalar-int-variable [[,] (label-list)]

The variable shall be a named variable of default integer type. That is, it shall not be
an array element, a component of a structure, or an object of nondefault integer type.

The variable shall be assigned the label of a branch target statement in the same
scoping unit as the assigned GO TO statement.

If alabel list appears, such asin the following examples, the variable shall have been
assigned alabel value that isin the list:

GO TO K
GO TO K (10, 20, 100)

The ASSI GN statement also allows the label of a FORMAT statement to be
dynamically assigned to an integer variable, which can later be used as a format
specifier in READ, WRI TE, or PRI NT statements. This hinders readability, permits
inconsistent usage of the integer variable, and can be an obscure source of error.

This functionality is available through character variables, arrays, and constants.

9.10.2 Assigned Format Specifiers

When an |/O statement containing the integer variable as a format specifier is
executed, the integer variable can be defined with the label of a FORMAT specifier.

9.11 Two-branch | F Statements

Outmoded | F statements are the two-branch arithmetic | F and the indirect logical
| F.

184 S-3901-71

Obsolete Features [9]

9.11.1 Two-branch Arithmetic | F

A two-branch arithmetic | F statement transfers control to statement s, if expression
eis evaluated as nonzero or to statement s, if e is zero. The arithmetic expression
should be replaced with arelational expression, and the statement should be changed
to an | F statement or an | F construct. Thisformat is as follows:

IF(e) ST

e Integer, real, or double precision expression

S Label of an executable statement in the same program unit
Example:

IF (1+J*K) 100, 101

9.11.2 Indirect Logical | F

Anindirect logical | F statement transfers control to statement s, if logical expression
leistrue and to statement s; if leisfalse. An| F construct or an | F statement should
be used in place of this outmoded statement. Thisformat is as follows:

IF(le) s

le Logical expression

S & Labels of executable statements in the same program unit
Example:

| F(X. GE. Y) 148, 9999

9.12 Real and Double Precision DOVariables

The Cray Fortran compiler allows real variables and values as the DO variable and
limitsin DO statements. The preferred aternative isto use integer values and compute
the desired real value.

9.13 Nested Loop Termination

S-3901-71

Older Cray Fortran compilers allowed nested DO loops to terminate on a single
END DO statement if the END DO statement had a statement label. The END DO
statement is included in the Fortran standard. The Fortran standard specifies that a
separate END DO statement shall be used to terminate each DOloop, so allowing
nested DO loops to end on asingle, labeled END DO statement is an outmoded
feature.

185

Cray Fortran Reference Manual

9.14 Branching into a Block

Although the standard does not permit branching into the code block for a DO
construct from outside of that construct, the Cray Fortran compiler permits branching
into the code block for aDOor DO WHI LE construct. By default, the Cray Fortran
compiler issues an error for this situation. Cray does not recommend branching into a
DO construct, but if you specify thef t n - eg command, the code will compile.

9.15 ENCODE and DECCDE Statements

A formatted I/O operation defines entities by transferring data between 1/0 list items
and records of afile. Thefile can be on an external mediaor in internal storage.

The Fortran standard provides READ and WWRI TE statements for both formatted
externa and internal file I/O. Thisis the preferred method for formatted internal file
I/O. It isthe only method for list-directed internal file I/O.

The ENCODE and DECODE statements are an alternative to standard Fortran READ
and VRl TE statements for formatted internal file 1/O.

An internal file in standard Fortran 1/O shall be declared as character, while the
internal file in ENCODE and DECODE statements can be any data type. A record

in an internal file in standard Fortran 1/O is either a scalar character variable or an
array element of a character array. The record size in an internal file in an ENCODE
or DECODE statement is independent of the storage size of the variable used as the
internal file. If theinternal fileis a character array in standard Fortran /O, multiple
records can be read or written with internal file I/O. The alternative form does not
provide the multiple record capability.

9.15.1 ENCCDE Statement

186

The ENCODE statement provides a method of converting or encoding the internal
representation of the entities in the output list to a character representation. The
format of the ENCODE statement is as follows:

ENCODE (n, f, dest) [elist]

n Number of charactersto be processed. Nonzero integer expression
not to exceed the maximum record length for formatted records. This
is the record size for the interna file.

f Format identifier. 1t cannot be an asterisk.

dest Name of internal file. It can be avariable or array of any datatype.
It cannot be an array section, a zero-sized array, or a zero-sized
character variable.

eist Output list to be converted to character during the ENCODE
Statement.

S-3901-71

Obsolete Features [9]

The output list items are converted using format f to produce a sequence of n
characters that are stored in the internal file dest. The n characters are packed 8
characters per word.

An ENCODE statement transfers one record of length n to the internal file dest. If
format f attempts to write a second record, ENCODE processing repositions the
current record position to the beginning of the internal file and begins writing at that
position.

An error is issued when the ENCODE statement attempts to write more than n
charactersto the record of the internal file. If dest isanoncharacter entity and n is not
amultiple of 8, the last word of the record is padded with blanks to a word boundary.
If dest is acharacter entity, the last word of the record is not padded with blanks to
aword boundary.

Example 1: The following example assumes a machine word length of 64 bits and
uses the underscore character (_) as a blank:

| NTEGER ZD(5), ZE(3)

ZD(1)="TH'S
ZD(2)=' MUST____
ZD(3)=' HAVE___
ZD(4)=' FOUR ___
ZD(5)=' CHAR
1 FORMAT(5A4)
ENCODE(20, 1, ZE) ZD
DO 10 1=1, 3
PRINT 2,' ZE(',1,")="",ZE(1),'""
10 CONTI NUE
2 FORMAT(A, | 2, A, A8, A)
END

The output is as follows:

>ZE(1) ="TH SMUST"
>ZE(2) =" HAVEFOUR'
>ZE(3)="CHAR "

9.15.2 DECCDE Statement

S-3901-71

The DECCODE statement provides a method of converting or decoding from a character
representation to the internal representation of the entitiesin the input list. The format
of the DECODE statement is as follows:

DECODE (n, f, source) [dlist]

n Number of charactersto be processed. Nonzero integer expression
not to exceed the maximum record length for formatted records. This
is the record size for the interna file.

f Format identifier. It cannot be an asterisk.

187

Cray Fortran Reference Manual

source

dlist

Name of internal file. It can be avariable or array of any datatype.
It cannot be an array section or a zero-sized array or a zero-sized
character variable.

Input list to be converted from character during the DECODE

statement.

The input list items are converted using format f from a sequence of n characters
in the internal file source to an internal representation and stored in the input list
entities. If the interna file source is noncharacter, the internal fileis assumed to be a
multiple of 8 characters.

Example 1: An example of a DECODE statement is as follows:

NTEGER ZD(4), ZE(3)
ZE(1) =" WHI LETHI!
ZE(2)='S HAS F'
ZE(3)='| VE
FORMAT(4A5)
DECODE(20, 3, ZE) ZD
DO 10 1=1, 4

PRINT 2,'ZD(',1,")
CONTI NUE
FORMAT(A, | 2, A, A8, A)
END

The output is as follows:

>ZD(1) ="\l LE
>ZD(2)="TH S
>ZD(3)="HAS

>ZD(4)="FI VE

woz(1),

9.16 BUFFER | Nand BUFFER QUT Statements
You can use the BUFFER | Nand BUFFER OUT statements to transfer data.

188

Data can be transferred while allowing the subsequent execution sequence to proceed
concurrently. Thisis called asynchronous I/O. Asynchronous I/O may require the use
of nondefault file formats or FFIO layers, as discussed in Chapter 13, Using Flexible
File I/0O (FFIO) on page 233. BUFFER | Nand BUFFER OUT operations may

proceed concurrently on several units or files. If they do not proceed asynchronously,
they will use synchronous 1/0.

BUFFER | Nisfor reading, and BUFFER QOUT isfor writing. A BUFFER | N or
BUFFER OUT operation includes only data from a single array or a single common

block.

S-3901-71

Obsolete Features [9]

Either statement initiates a data transfer between a specified file or unit (at the
current record) and memory. If the unit or file is completing an operation initiated
by any earlier BUFFER | N or BUFFER OUT statement, the current BUFFER

I Nor BUFFER QOUT statement suspends the execution sequence until the earlier
operation is complete. When the unit's preceding operation terminates, execution of
the BUFFER | Nor BUFFER QUT statement completes asif no delay had occurred.

You can usethe UNI T(3i) or LENGTH(3i) intrinsic procedures to delay the
execution sequence until the BUFFER | N or BUFFER OUT operation is complete.
These functions can also return information about the 1/0O operation at its termination.

The general format of the BUFFER | Nand BUFFER OUT statements follows:

buffer_in_stmt is BUFFER I N (id, mode) (start loc, end loc)
buffer_out_stmt is BUFFER OUT (id, mode) (start loc, end_loc)
i0_unit is external_file unit

or file_name_expr
mode is scalar_integer_expr
start_loc is variable
end loc is variable

S-3901-71

In the preceding definition, the variable specified for start_loc and end_loc cannot
be of aderived type if you are performing implicit data conversion. The dataitems
between start_loc and end_|loc must be of the same type.

The BUFFER | Nand BUFFER QUT statements are defined as follows.
BUFFER I N (io_unit, mode) (start loc, end_loc)

BUFFER OUT (io_unit, mode) (start_loc, end_loc)

io_unit An identifier that specifies a unit. The I/O unit is a scalar integer
expression with a nonnegative value, an asterisk (*), or a character
literal constant (external name). The I/O unit forms indicate that the
unit is aformatted sequential access external unit.

mode Mode identifier. Thisinteger expression controls the record position
following the data transfer. The mode identifier isignored on files
that do not contain records; only full record processing is available.

189

Cray Fortran Reference Manual

190

start_loc, end_loc

Symbolic names of the variables, arrays, or array elements that
mark the beginning and ending locations of the BUFFER | N or
BUFFER OUT operation. These names must be either elements of
asingle array (or equivalenced to an array) or members of the same
common block. If start_loc or end_loc is of type character, then both
must be of type character. If start_loc and end_|oc are noncharacter,
then the item length of each must be equal.

For example, if the internal length of the datatype of start_loc is 64
bits, the internal length of the data type of end_loc must be 64 bits.
To ensure that the size of start_|oc and end_loc are the same, use the
same data type for both.

The mode identifier, mode, controls the paosition of the record at unit io_unit after the
datatransfer is complete. The values of mode have the following effects:

» Specifying mode > 0 causes full record processing. File and record positioning
works as with conventional 1/0. The record position following such atransfer is
always between the current record (the record with which the transfer occurred)
and the next record. Specifying BUFFER OUT with mode > 0 ends a series of
partial-record transfers.

* Specifying mode < 0 causes partial record processing. In BUFFER | N, the
record is positioned to transfer its (n +1)th word if the nth word was the last
transferred. In BUFFER QUT, the record is left positioned to receive additional
words.

The amount of data to be transferred is specified in words without regard to types or
formats. However, the data type of end_loc affects the exact ending location of a
transfer. If end_loc is of amultiple-word data type, the location of the last word inits
multiple-word form of representation marks the ending location of the data transfer.

BUFFER OUT with start loc = end loc + 1 and mode > O causes a zero-word
transfer and concludes the record being created. Except for terminating a partial
record, start_loc following end_loc in a storage sequence causes a runtime error.

Example:

PROGRAM XFR
DI MENSI ON A(1000), B(2, 10, 100), C(500)

BUFFER | N(32,0) (A(1), A(1000))
DO 9 J=1, 100
B(1,1,J) = B(1,1,J) + B(2,1,J)
9 CONTI NUE
BUFFER | N(32,0) (C(1), C(500))
BUFFER OUT(22,0) (A(1), A(1000))

END

S-3901-71

Obsolete Features [9]

9.17 Asterisk

Thefirst BUFFER | N statement in this example initiates a transfer of 1000 words
from unit 32. If asynchronous 1/0 is available, processing unrelated to that transfer
proceeds. When this is complete, a second BUFFER | Nis encountered, which
causes a delay in the execution sequence until the last of the 1000 words is received.
A transfer of another 500 words isinitiated from unit 32 as the execution sequence
continues. BUFFER OUT begins atransfer of the first 1000 words to unit 22. In all
cases mode = 0, indicating full record processing.

Delimiters

The asterisk was allowed to delimit aliteral character constant. It has been replaced
by the apostrophe and quotation mark.

hy h, ... h

* Delimiter for aliteral character string

h Any ASCII character indicated by a C that is capable of internal
representation

Example:

AN ASTERI SK EDI T DESCRI PTOR

9.18 Negative-valued X Descriptor

A negative value could be used with the X descriptor to indicate a move to the left.
This has been replaced by the TL descriptor.

[-b] X

b Any nonzero, unsigned integer constant

X Indicates a move of as many positions as indicated by b
Example:

-55X ! Moves current position 55 spaces |eft

9.19 Aand RDescriptors for Noncharacter Types

S-3901-71

The Rw descriptor and the use of the Aw descriptor for noncharacter data are available
primarily for programs that were written before a true character type was available.
Other uses include adding labels to binary files and the transfer of data whose typeis
not known in advance.

List items can be of type real, integer, complex, or logical. For character use, the
binary form of the datais converted to or from ASCII codes. The numeric list itemis
assumed to contain ASCII characters when used with these edit descriptors.

191

Cray Fortran Reference Manual

Complex items use two storage units and require two A descriptors, for the first and
second storage units respectively.

The Aw descriptor works with noncharacter list items containing character datain
essentially the same way as described in the Fortran standard. The Rw descriptor
works like Aw with the following exceptions:

e Charactersin an incompletely filled input list item are right-justified with the
remainder of that list item containing binary zeros.

» Partial output of an output list item isfrom its rightmost character positions.

The following example shows the Aw and Rw edit descriptors for noncharacter data

types:
I NTEGER | A
LOG CAL LA
REAL RA
DOUBLE PRECI SI ON DA
COWPLEX CA
CHARACTER*52 CHC
CHC=" ABCDEFGHI JKLMNOPQRSTUWWKYZabcdef ghi j kI mopgr st uvwxyz'
READ(CHC, 3) |IA, LA, RA DA CA
3 FORVAT(A4, A8, A10, A17, A7, AB)
PRINT 4, IA LA RA DA CA
4 FORVAT(1x, 3(A8,'-"'), Al6,"'-', 2A8)
READ(CHC, 5) |A, LA RA
5 FORVAT(R2, R8, R9)
PRINT 4, IA LA RA
END

The output of this program would be as follows:

> ABCD - EFGHI JKL- OPQRSTUV- XYZabcdef ghi j kIl m nopgr st uvwxyz
> 000000AB- CDEFGHI J- LMNOPQRS-

The arrow (>) indicates leading blanks in the use of the A edit descriptor. The
lowercase letter o is used to indicate where binary zeros have been written with the
R edit descriptor.

The binary zeros are not printable characters, so the printed output simply contains
the characters without the binary zeros.

9.20 HEdit Descriptor

This edit descriptor can be a source of error because the number of characters
following the descriptor can be miscounted easily. The same functionality is available
using the character constant edit descriptor, for which no count is required.

192 S-3901-71

Obsolete Features [9]

9.21 Obsolete Intrinsic Procedures

S-3901-71

The following information pertains to the H edit descriptor:

Table 22. Summary of String Edit Descriptors

Descriptor Description

H Transfer of text character to output record

"text’ Transfer of a character literal constant to output record
"text" Transfer of a character literal constant to output record

The Cray Fortran compiler supports many intrinsic procedures that have been used in
legacy codes, but that are now obsolete. The following table indicates the obsol ete
procedures and the preferred alternatives. For more information about a particular

procedure, see its man page.

Table 23. Obsolete Procedures and Alternatives

Obsolete Intrinsic Procedure

Preferred Alternative

AND

BI TEST
BJTEST
BKTEST
CDABS
CDCOS
CDEXP
CDLOG
CDSI N
CDSQRT
cLoC
COVPL
COTAN
CQABS
CQDEXP
QS| N
CQQRT
CSMG

| AND
BTEST
BTEST
BTEST
ABS
COos
EXP
LOG
SI'N
SQRT
LOCor C LOC
NOT
cor
ABS
EXP
SI'N
SQRT
MVERGE

193

Cray Fortran Reference Manual

Obsolete Intrinsic Procedure Preferred Alternative
CVMGM MERGE
CVMCGN MERGE
CVMGP MERGE
VM2 MERGE
CVMGT MERGE
DACOSD ACCSD
DASI ND ASI ND
DATAN2D ATAN2D
DATAND ATAND
DCMVPLX CMPLX
DCONJG CONIG
DCOsD COsD
DCOT cor
DCOTAN cor
DFLOAT REAL
DFLQATI REAL
DFLCATJ REAL
DFLOATK REAL

DI MAG Al MAG
DREAL REAL

DSI ND SI ND
DTAND TAND

EQV NOT, | EOR
FCD (none)
FLOATI REAL
FLOATJ REAL
FLOATK REAL
FP_CLASS | EEE_CLASS
| DATE DATE_AND_TI ME
| EEE_REAL REAL

| I ABS ABS

| I AND | AND

| | BCHNG | BCHNG

194 S-3901-71

Obsolete Features [9]

S-3901-71

Obsolete Intrinsic Procedure

Preferred Alternative

| 1 BCLR
11 BI TS
| | BSET
| | EOR
11Dl M
|1 DI NT
|1 FI X
|1 NT
11 OR
11 QNT
| 1 SHA
| 1 SHC
| | SHFT
| | SHFTC
| 1 SHL
1'1SI GN
| MAG

| MOD

| NI NT
| NT2

| NT4

| NTS

| NOT

| QNI NT
| RTC

| SHA

| SHC

| SHL
JDATE
JFI X
JI ABS
J1 AND
J1 BCHNG

| BCLR
I BI TS

| BSET

| EOR

DI M

| NT

| NT

| NT

| OR

| NT

SHI FTA

| SHFT

| SHFTC

| SHFTC

| SHFT

SI GN

Al MAG

MOD

NI NT

| NT

| NT

| NT

NOT

NI NT

SYSTEM CLOCK
SHI FTA

| SHFTC

| EEE_| S_NAN
DATE_AND_TI MVE
| NT

ABS

| AND

| BCHNG

195

Cray Fortran Reference Manual

Obsolete Intrinsic Procedure Preferred Alternative
JI BCLR | BCLR
JIBITS IBI TS
JI BSET | BSET
JI EOR | EOR
JIDM DI M

JI DI NT | NT
JIFI X | NT
JINT | NT
JIOR I OR
JIQ NT | NT

JI SHA SHI FTA
JI SHC | SHFTC
JI SHFT | SHFT
JI SHFTC | SHFTC
JI SHL | SHFT
JI SI GN SI GN
JMOD MOD
JNI NT NI NT
JNOT NOT

KI ABS ABS

KI' AND I AND

KI BCHNG I BCHNG
KI BCLR | BCLR
KI BI TS IBITS
Kl BSET | BSET
Kl EOR | EOR

KI DI M DI M

Kl DI NT | NT

KI NT | NT

Kl OR I OR

KI Q NT | NT

Kl SHA SHI FTA
Kl SHC | SHFTC

196 S-3901-71

Obsolete Features [9]

S-3901-71

Obsolete Intrinsic Procedure

Preferred Alternative

KI SHFT
KI SHFTC
KI SHL

KI SI GN
KMOD

KNI NT
KNOT
LENGTH
LONG
LSHI FT
MY_PE
MEMORY_BARRI ER
NEQV

R

QABS
QACOS
QACOSD
QASI N
QASI ND
QATAN
QATAN2
DATAN2D
QATAND
QCMPLX
QCONJG
QCos
QCOSD
QCOSH
Qcor
QCOTAN
QDI M
QEXP
QEXT

| SHFT

| SHFTC
| SHFT
SI GN
MOD

NI NT
NOT
(none)

| NT

| SHFT or SHI FTL
TH S_| MAGE
SYNC MEMORY
| EOR

| OR
ABS
ACCS
ACOSD
ASI N
ASI ND
ATAN
ATAN2
ATAN2D
ATAND
CMPLX
CONIG
COs
CGOsD
COsH
cor
cor

DI M
EXP
REAL

197

Cray Fortran Reference Manual

198

Obsolete Intrinsic Procedure

Preferred Alternative

QFLOAT
QFLOATI
QFLOATJ
QFLOATJ
QFLOATK
Q MAG
Q NT
QLOG
QLOGLO
QVAX1
QM NL
QVOD
QNI NT
QREAL
QS GN
QSI N
QSI ND
QSI NH
QSQRT
QTAN
QTAND
QTANH
RAN
RANF
RANGET
RANSET
REMOTE_WRI TE_BARRI ER
RSHI FT
RTC
SECNDS
SHI FT
SHORT
SNGLQ

REAL
REAL

REAL

REAL

REAL

Al MAG

Al NT

LOG

LOGLO

MAX

M N

MOD

ANI NT

REAL

SI GN

SIN

SI ND

SI NH

SQRT

TAN

TAND

TANH

RANDOM NUVBER
RANDOM NUVBER
RANDOM_SEED
RANDOM_SEED
SYNC MEMORY

| SHFT or SHI FTR
SYSTEM CLOCK
CPU_TI ME

| SHFTC

| NT

REAL

S-3901-71

Obsolete Features [9]

S-3901-71

Obsolete Intrinsic Procedure

Preferred Alternative

TI ME

UNIT

VRl TE_MEMORY_BARRI ER
XOR

DATE_AND_TI MVE
WAI T

SYNC MEMORY

| EOR

199

Cray Fortran Reference Manual

200 S-3901-71

Cray Fortran Deferred Implementation and
Optional Features [10]

This release of the Cray Fortran compiler supports the Fortran 2003 standard, with
the following exceptions.

10.1 1SO_10646 Character Set

The Fortran 2003 features related to supporting the 1ISO_10646 character set are not
supported. This includes declarations, constants, and operations on variables of
char act er (ki nd=4) and 1/O operations.

10.2 Restrictions on Unlimited Polymorphic Variables

If the- e h option is specified to cause packed storage for short integers and
logicals, unlimited polymorphic variables whose dynamic types arei nt eger (1) ,
i nteger(2),logical (1),orlogical (2) arenot supported.

10.3 ENCODI NG= in I/O Statements

The ENCODI NG= specifier in |/O statements is accepted by the compiler but has
no effect.

10.4 Allocatable Assignment (Optionally Enabled)

The Fortran 2003 standard allows an allocatable variable in an intrinsic assignment
statement (var i abl e = expr essi on) to have a shape different from the
expression. If the shapes are different, the variable is automatically deallocated and
reallocated with the shape of the expression. This feature is available in the CCE
7.1 Cray Fortran compiler but is not enabled by default because of potential adverse
effects on performance. The new behavior is enabled by the - e wcommand line
option.

S-3901-71 201

Cray Fortran Reference Manual

202 S-3901-71

Cray Fortran Implementation Specifics [11]

The Fortran standard specifies the rules for writing a standard conforming Fortran
program. Many of the details of how such a program is compiled and executed are
intentionally not specified or are explicitly specified as being processor-dependent.
This chapter describes the implementation used by the Cray Fortran compiler.
Included are descriptions of the internal representations used for data objects and the
values of processor-dependent language parameters.

11.1 Companion Processor

For the purpose of C interoperability, the Fortran standard refers to a "companion
processor." The companion processor for the Cray Fortran compiler isthe Cray C
compiler.

11.2 | NCLUDE Line

There is no limit to the nesting level for I NCLUDE lines. The character literal
constant in an | NCLUDE line is interpreted as the name of the file to be included.
This case-sensitive name may be prefixed with additional characters based on the - |
compiler command line option.

11.3 | NTEGER Kinds and Values

I NTEGER kind type parameters of 1, 2, 4, and 8 are supported. The default kind
type parameter is4 unlessthe-s defaul t 64 or-s i nt eger 64 command
line option is specified, in which case the default kind type parameter is 8. The
interpretation of kinds 1 and 2 depend on whether the- e h command line option is
specified. Integer values are represented as two's complement binary values.

11.4 REAL Kinds and Values

S-3901-71

REAL kind type parameters of 4 and 8 are supported. The default kind type parameter
is4unlessthe-s defaul t64 or-s real 64 command lines option is specified,
in which case, the default kind type parameter is 8. Real values are represented in
the format specified by the IEEE 754 standard, with kinds 4 and 8 corresponding to
the 32 and 64 bit | EEE representations.

203

Cray Fortran Reference Manual

11.5 DOUBLE PRECI SI ONKinds and Values

The DOUBLE PRECI SI ONtypeis an alternate specification of a REAL type. The
kind type parameter of that REAL type is twice the value of the kind type parameter
for default REAL unlessthe - sdef aul t 64 or - sr eal 64 command line options
are specified, in which case, the kind type parameter for DOUBLE PRECI SI ON
and default REAL are the same, and REAL constants with a D exponent are treated
asif the Dwere an E. Note that if the - sdef aul t 64 or - sr eal 64 options are
specified, the compiler is not standard conforming.

11.6 LOGE CAL Kinds and Values

LOG CAL kind type parameters of 1, 2, 4, and 8 are supported. The default kind
type parameter is4 unlessthe-s defaul t 64 or-s i nt eger 64 command
line option is specified, in which case, the default kind type parameter is 8. The
interpretation of kinds 1 and 2 depend on whether the - e h command line option is
specified. Logical values are represented by a bit sequence in which the low order
bitissetto 1 for thevalue. true. andtoOfor. f al se. , and the other bitsin
the representation are set to 0.

11.7 CHARACTERKIinds and Values

The CHARACTER kind type parameter of 1 is supported. The default kind type
parameter is 1. Character values are represented using the 8-bit ASCII character
encoding.

11.8 Cray Pointers

Cray pointers are 64-bit objects.

11.9 ENUMKind

An enumerator that specifiesthe Bl ND(C) attribute creates values with a kind type
parameter of 4.

11.10 Storage Issues

This section describes how the Cray Fortran compiler uses storage, including how this
compiler accommodates programs that use overindexing of blank common.

204 S-3901-71

Cray Fortran Implementation Specifics [11]

11.10.1 Storage Units and Sequences

The size of the numeric storage unitsis 32 bits, unlessthe- s def aul t 64 option
is specified, in which case the numeric storage unit is 64 hits. If the-s real 64
or-s integer64optionisspecified aone, or the - dp is specified in addition
to-s defaul t 64 or-s real 64, therelative sizes of the storage assigned for
default intrinsic types do not conform to the standard. In this case, storage sequence
associations involving variables declared with default intrinsic noncharacter types
may be invalid and should be avoided.

11.10.2 Static and Stack Storage
The Cray Fortran compiler allocates variables to storage according to the following
criteria
» Variablesin common blocks are always allocated in the order in which they
appear in COMVON statements.
« Datain modules are statically allocated.

e User variables that are defined or referenced in a program unit, and that also
appear in SAVE or DATA statements, are allocated to static storage, but not
necessarily in the order shown in your source program.

e Other referenced user variables are assigned to the stack. If - ev is specified on
the Cray Fortran compiler command line, referenced variables are allocated to
static storage. This alocation does not necessarily depend on the order in which
the variables appear in your source program.

S-3901-71 205

Cray Fortran Reference Manual

e Compiler-generated variables are assigned to a register or to memory (to the stack
or heap), depending on how the variable is used. Compiler-generated variables
include DO-loop trip counts, dummy argument addresses, temporaries used in
expression evaluation, argument lists, and variables storing adjustable dimension
bounds at entries.

« Automatic objects may be allocated to either the stack or to the heap, depending
on how much stack space is available when the objects are alocated.

e Heap or stack alocation can be used for TASK COVMON variables and
some compiler-generated temporary data such as automatic arrays and array
temporaries.

» Unsaved variables may be assigned to aregister by optimization and not allocated
storage.

» Unreferenced user variables not appearing in COVMON statements are not
allocated storage.

11.10.3 Dynamic Memory Allocation

206

Many FORTRAN 77 programs contain a memory allocation scheme that expands an
array in acommon block located in central memory at the end of the program. This
practice of expanding a blank common block or expanding a dynamic common block
(sometimes referred to as overindexing) causes conflicts between user management of
memory and the dynamic memory requirements of CLE libraries. It is recommended
that you modify programs rather than expand blank common blocks, particularly
when migrating from other environments.

Figure 2 shows the structure of a program under the CLE operating systems in
relation to expanding a blank common block. In both figures, the user areaincludes
code, data, and common blocks.

S-3901-71

Cray Fortran Implementation Specifics [11]

Figure 2. Memory Use

Without an expandable With an expandable
common block: common block:

Dynamic
area
Heap
Heap
User User
area area
Address 0

11.11 Finalization

A finalizable object in amodule is not finalized in the event that there is no longer
any active procedure referencing the module.

A finalizable object that is alocated via pointer allocation is not finalized in the event
that it later becomes unreachable due to all pointersto that object having their pointer
association status changed.

11.12 ALLOCATE Error Status

If an error occurs during the execution of an ALLOCATE statement with ast at =
specifier, subsequent items in the allocation list are not allocated.

11.13 DEALLOCATE Error Status

If an error occurs during the execution of an DEALL OCATE statement with ast at =
specifier, subsequent itemsin the deallocation list are not deall ocated.

11.14 ALLOCATABLE Module Variable Status

An unsaved allocatable module variable remains allocated if it is allocated when the
execution of an END or RETURN statement results in no active program unit having
access to the module.

S-3901-71 207

Cray Fortran Reference Manual

11.15 Kind of a Logical Expression

For an expression such asx1 op x2 where op isalogical intrinsic binary operator
and the operands are of type logical with different kind type parameters, the kind type
parameter of the result isthe larger kind type parameter of the operands.

11.16 STOP Code Availability

If a STOP code is specified in a STOP statement, its value is output to st der r when
the STOP statement is executed.

11.17 Stream File Record Structure and Position

A formatted file written with stream access may be later read as arecord file. In that
case, embedded newline characters (char (10)) indicate the end of arecord and the
terminating newline character is not considered part of the record.

The file storage unit for aformatted stream file is a byte. The position is the ordinal
byte number in thefile; the first byteis position 1. Positions corresponding to newline
characters (char (10)) that were inserted by the /O library as part of record output
do not correspond to positions of user-written data.

11.18 File Unit Numbers

The values of | NPUT_UNI T, OUTPUT_UNI T, and ERROR_UNI T defined in the

| SO _Fortran_env module are 100, 101, and 102, respectively. These three unit
numbers are reserved and may not be used for other purposes. The files connected to
these units are the same files used by the companion C processor for standard input
(st di n), output (st dout), and error (st der r). An asterisk (*) specified as the
unit for a READ statement specifies unit 100. An asterisk specified as the unit for a
VRl TE statement, and the unit for PRI NT statementsis unit 101. All positive default
integer values are available for use as unit numbers.

11.19 OPEN Specifiers

208

If the ACTI ON= specifier is omitted from an OPEN statement, the default valueis
determined by the protections associated with the file. If both reading and writing are
permitted, the default value is READVWRI TE.

If the ENCODI NG= specifier is omitted or specified as DEFAULT in an OPEN
statement for aformatted file, the encoding used is ASCI | .

The case of the name specified in a FI LE= specifier in an OPEN statement is
significant.

If the FI LE= specifier isomitted, f ort . is prepended to the unit number.

S-3901-71

Cray Fortran Implementation Specifics [11]

If the RECL= specifier is omitted from an OPEN statement for a sequential accessfile,
the default value for the maximum record length is 1024.

If the file is connected for unformatted 1/O, the length is measured in 8-bit bytes.
The FORME specifier may also be SYSTEMfor unformatted files.

If the ROUND= specifier is omitted from an OPEN statement, the default value is
NEAREST. Specifying avalue of PROCESSOR_DEFI NED s equivalent to specifying
NEAREST.

If the STATUS= specifier is omitted or specified as UNKNOWN in an OPEN statement,
the specification is equivalent to OLD if the file exists, otherwise, it is equivalent to
NEW

11.20 FLUSH Statement

Execution of a FLUSH statement causes memory resident buffers to be flushed
to the physical file. Output to the unit specified by ERROR_UNI T in the

| SO _Fort ran_env moduleis never buffered; execution of FLUSH on that unit
has no effect.

11.21 Asynchronous I/O

The ASYNCHRONOUS= specifier may be set to YES to alow asynchronous 1/0 for
aunit or file.

Asynchronous I/0 is used if the FFIO layer attached to the file provides asynchronous
access.

11.22 REAL 1/O of an IEEE NaN

An |EEE NaN may be used as an I/O value for the F, E, D, or G edit descriptor or
for list-directed or namelist I/0.

11.22.1 Input of an IEEE NaN

S-3901-71

The form of NaN is an optional sign followed by the string 'NAN optionally followed
by a hexadecimal digit string enclosed in parentheses. Theinput is case insensitive.
Some examples are:

NaN - qui et NaN
nAN() - qui et NaN
-nan(ffffffff) - qui et NaN
NAn(7f 800001) - signalling NaN
NaN(f f c00001) - quiet NaN
NaN(f f 800001) - signalling NaN

209

Cray Fortran Reference Manual

The internal value for the NaN will become a quiet NaN if the hexadecimal string is
not present or is not a valid NaN.

A '+' or - ' preceding the NaN on input will be used as the high order bit of the
corresponding READ input list item. An explicit sign overrides the sign bit from the
hexadecimal string. The internal value becomes the hexadecimal string if it represents
an |EEE NaN in the internal data type. Otherwise, the form of the internal value

is undefined.

11.22.2 Output of an IEEE NaN

The form of an IEEE NaN for the F, E, D, or G edit descriptor or for list-directed or
namelist output is:

1. If the field width wis absent, zero, or greater than (5 + 1/4 of the size of the
internal value in bits), the output consists of the string ‘NaN' followed by the
hexadecimal representation of the internal value within a set of parentheses. An
example of the output field is:

NaN(7f c00000)
2. If thefield width wis at least 3 but less than (5 + 1/4 of the size of the internal

value in hits), the string 'NaN will be right-justified in the field with blank fill on
the left.

3. If thefield width wis 1 or 2, the field isfilled with asterisks.
The output field hasno '+' or '- '; the sign is contained in the hexadecimal string.

To get the same internal value for aNaN, write it with alist-directed write statement
and read it with alist-directed read statement.

To write and then read the same NaN, the field widthwin D, E, F, or G must be at
least the number of hexadecimal digits of the internal datum plus 5.
REAL(4): w >= 13

REAL(8) : w >= 21
REAL(16): w >= 37

11.23 List-directed and NAMELI ST Output Default Formats

210

The length of the output value in NAMELI ST and list-directed output depends on the
value being written. Blanks and unnecessary trailing zeroes are removed unless the
- woptionto theassi gn command is specified, which turns off this compression.

By default, full-precision printing is assumed unless a precision is specified by
the L1 STI O_PRECI SI ON environment variable (for more information about
the L1 STI O_PRECI SI ON environment variable, see LI STI O_PRECI SI ON
Environment Variable on page 77).

S-3901-71

Cray Fortran Implementation Specifics [11]

11.24 Random Number Generator

A multiplicative congruential generator with period 2**46 is used to produce the
output of the RANDOM_NUMBER intrinsic subroutine. The seed array contains one
64-bit integer value.

11.25 Timing Intrinsics

A call tothe SYSTEM_CLOCK intrinsic subroutine with the COUNT argument present
trangdlates into the inline instructions that directly access the hardware clock register.
See the description of the- e s and-d s command line options for information
about the values returned for the count and count rate. For fine-grained timing, Cray
recommends using aki nd = 8 count variable.

The CPU_TI ME subroutine obtains the value of its argument from the get r usage
system call. Its execution timeis significantly longer than for the SYSTEM CLOCK
routine, but the values returned are closer to those used by system accounting utilities.

11.26 IEEE Intrinsic Modules

S-3901-71

The |EEE intrinsics modules | EEE_EXCEPTI ONS, | EEE_ARI THVETI C, and

| EEE_FEATURES are supplied. Denormal numbers are not supported on Cray
hardware. The | EEE_SUPPORT _DENORMAL inquiry functionreturns. f al se. for
al kinds of arguments.

At the start of program execution, all floating point exception traps are disabled.

211

Cray Fortran Reference Manual

212 S-3901-71

Enhanced I/O: Using the Assign
Environment [12]

Fortran programs often need the ability to alter details of afile connection, such as
device residency, an dternative file name, afile space allocation scheme or structure,
or data conversion properties. These file connection details taken together comprise
the assign environment, and they can be modified by using the assi gn(1) command
and assi gn(3f) library interface.

The assign environment can also be accessed from C/C++ by using the
f f assi gn(3c) library interface.

12.1 Understanding the assi gn Environment

S-3901-71

The assi gn command information is stored in the assign environment file,
. assi gn, or inashell environment variable. To begin using the assign environment
to control a program'’s 1/O behavior, follow these steps.

1. Set the FI LENV environment variable to the desired path.

set FILENV environment-file
2. Runtheassi gn command to define the current assign environment.
assi gn arguments assign-object
For example:
assign -F cachea g:su
3. Run your program.

4. If you are not satisfied with the I/0O performance observed during program
execution, return to step 2, usethe assi gn command to adjust the assign
environment, and try again.

213

Cray Fortran Reference Manual

Theassi gn(1) command passes information to Fortran open statements and to the
f f open(3c) routine to identify the following elements:

e A list of unit numbers
* File names
» File name patterns that have attributes associated with them

The assign object is the file name, file name pattern, unit number, or type of 1/0 open
request to which the assign environment applies. When the unit or fileis opened
from Fortran, the environment defined by the assi gn command is used to establish
the properties of the connection.

12.1.1 Assign Objects and Open Processing

The I/O library routines apply options to afile connection for al related assign
objects.

If the assign object is a unit, the application of options to the unit occurs whenever
that unit is connected.

If the assign object is afile name or pattern, the application of options to the file
connection occurs whenever a matching file name is opened from a Fortran program.

When any of the library 1/O routines opens afile, it uses the specified assign
environment options for any assign objects that apply to the open request. Any of the
following assign objects or categories can apply to a given open request.

Table 24. Assign Object Open Processing

assign-obj ect Appliesto

g:all All open requests

g: su Open sequential unformatted
g: du Open direct unformatted

g: sf Open sequential formatted
g: df Open direct formatted

g_ff ff open

u: unit-number Open unit-number

214 S-3901-71

Enhanced 1/O: Using the Assign Environment [12]

assign-obj ect Appliesto

p: pattern When a file whose name matches pattern is
opened. The assigh environment can contain only
one p: assign-object that matches the current
open file. The exception isthat the p: %pattern
(which uses the %wildcard character) is silently
ignored if a more specific pattern also matches
the current file name being opened.

f: filename Whenever file filename is opened.

Options from the assign objects in these categories are collected to create the
complete set of options used for any particular open. The options are collected in
the listed order, with options collected later in the list of assign objects overriding
those collected earlier.

12.1.2 assi gn Command Syntax

S-3901-71

Hereis the syntax for the assi gn command:

assign [-1] [-Q [-aactualfile] [-bbs] [-f fortstd] [- msetting]

[-sft] [-t] [-ubufent] [-ysetting] [-Bsetting] [- Ccharcon]

[- Dfildes] [-Fspec[, specs]] [-Nnumcon] [-R] [- S setting]

[-Tsetting] [-Usetting] [-V] [-Wsetting] [-Y setting] [- Z setting] assign-object

The following specifications cannot be used with any other options:

assi gn - R [assign-object]

assi gn -V [assign-object]

A summary of the command options follows. For details, see the assi gn(1) and
i ntro_ffio(3f) man pages.

Control options:

-1 Specifies an incremental use of assign. All attributes are added to the
attributes already assigned to the current assign-object. This option
and the - O option are mutually exclusive.

-0 Specifies a replacement use of assign. This is the default control
option. All currently existing assign attributes for the current
assign-object are replaced. This option and the - | option are
mutually exclusive.

-R Removes all assign attributes for assign-object. If assign-object is
not specified, al currently assigned attributes for all assign-objects
are removed.

215

Cray Fortran Reference Manual

216

-V

Views attributes for assign-object. If assign-object is not specified,
al currently assigned attributes for all assign-objects are printed.

Attribute options:

- a actualfile

-b bs

-f fortstd

- m setting

-s ft

-1

- u bufent

-y setting

- B setting

- C charcon

- D fildes

Thef i | e= specifier or the actual file name.
Library buffer size in 4096-byte (512-word) blocks.

Specifies compatibility with a Fortran standard, where fortstd is
either 2003 for the current Cray Fortran or 95 for Cray Fortran
95. If the value 95 is set, the list-directed and namelist output of a
floating point will remain 0. E+O.

Specia handling of a direct access file that will be accessed
concurrently by several processes or tasks. Special handling includes
skipping the check that only one Fortran unit be connected to a unit,
suppressing file truncation to true size by the 1/O buffering routines,
and ensuring that the file is not truncated by the I/O buffering
routines. Enter either on or of f for setting.

Filetype. Enter t ext , cos, bl ocked, unbl ocked, u, shi n, or
bi n for ft. The default ist ext .

Temporary file.

Buffer count. Specifies the number of buffersto be allocated for a
file.

Suppresses repeat counts in list-directed output. setting can be either
on or of f. The default setting isof f .

Activates or suppresses the passing of the O_DI RECT flag to the
open(2) system call. Enter either on or of f for setting. Thisisan
important feature for 1/O optimization; if thisison, it enables reads
and writes directly to and from the user program buffer.

Character set conversion information. Enter asci i , or ebcdi ¢
for charcon. If you specify the - C option, you must also specify the
- F option.

Specifies a connection to astandard file. Enter st di n, st dout , or
st derr for fildes.

- F spec [, specs]

Flexible file I/O (FFIO) specification. Seetheassi gn(1) man
page for details about allowed values for spec and for details about
hardware platform support. Seethei ntro_f fi o(3f) man page for
details about specifying the FFIO layers.

S-3901-71

Enhanced 1/O: Using the Assign Environment [12]

S-3901-71

- N numcon

- S setting

- T setting

- U setting

- W setting

-Y setting

- Z setting

assign-object

Foreign numeric conversion specification. Seetheassi gn(1) man
page for details about allowed values for numcon and for details
about hardware platform support.

Suppresses use of a comma as a separator in list-directed output.
Enter either on or of f for setting. The default setting isof f .

Activates or suppresses truncation after write for sequential Fortran
files. Enter either on or of f for setting.

Produces a non-UNICOS form of list-directed output. Thisisa
global setting that sets the value for the - y, - S, and - Woptions.
Enter either on or of f for setting. The default setting isof f .

Suppresses compressed width in list-directed output. Enter either on
or of f for setting. The default setting is of f .

Skips unmatched namelist groups in a namelist input record. Enter
either on or of f for setting. The default setting isof f .

Recognizes —0.0 for |EEE floating-point systems and writes the
minus sign for edit-directed, list-directed, and namelist output. Enter
either on or of f for setting. The default setting ison.

Specify either afile name or a unit number for assign-object. The
assi gn command associates the attributes with the file or unit
specified. These attributes are used during the processing of Fortran
open statements or during implicit file opens.

Use one of the following formats for assign-object:

o f: filename

e (g:iotype, where io-typecanbesu,sf,du,df,orff (forexample g: ff
for f f open(3C)

e p: pattern (for example, p: fi |l e%

e U: unit-number (for example, u: 9)

+ filename

When the p: pattern form is used, the %and _ wildcard characters can be used. The
%matches any string of 0 or more characters. The _ matches any single character.
The %performs like the * when doing file name matching in shells. However, the %
character also matches strings of characters containing the/ character.

217

Cray Fortran Reference Manual

12.1.3 Using the Library Routines

218

Theassi gn(3f), asnuni t (3f), asnfi | e(3f), and asnr m(3f) routines can be
called from a Fortran program to access and update the assign environment. The
assi gn routine provides an easy interface to assign processing from a Fortran
program. Theasnuni t and asnfi | e routines assign attributes to units and
files, respectively. The asnr mroutine removes all entries currently in the assign
environment.

The calling sequences for library routines are as follows:

call assign (cmd, ier)
call asnunit (iunit, astring, ier)
call asnfile (fname, astring, ier)

call asnrm (ier)

Where:

cmd Fortran character variable containing a completeassi gn command
in the format acceptable to the pxf syst emroutine.

ier Integer variable that is assigned the exit status on return from the
library interface routine.

iunit Integer variable or constant that contains the unit number to which
attributes are assigned.

astring Fortran character variable that contains any attribute options and
option values from theassi gn command. Control options- | , - O
and - R can also be passed.

fname Character variable or constant that contains the file name to which

attributes are assigned.

A status of 0 indicates normal return. A status of greater than O indicates a specific
error status. Use the expl ai n command to determine the meaning of the error
status.

Thefollowing calls are equivalent totheassi gn -s u f: fil e command:

call assign('assign -s u f:file',ier)

call asnfile('file ,'-s u',ier)

The following call is equivalent to executing theassign -1 -n 2 u: 99
command:

iun = 99

call asnunit(iun,'-i -n 2',ier)

The following call is equivalent to executing theassi gn - R command:

call asnrn(ier)

S-3901-71

Enhanced 1/O: Using the Assign Environment [12]

12.2 Tuning File Connection Behavior

12.2.1 Using Alternative File Names

S-3901-71

The - a option specifies the actua file name to which a connection is made. This
option allows files to be created in different directories without changing the FI LE=
specifier on an OPEN statement.

For example, consider the following assi gn command issued to open unit 1:
assign -a /tnp/nmydir/tnpfile u:l

The program then opens unit 1 with any of the following statements:

WRI TE(1) variable I inplicit open
OPEN(1) I unnarmed open
OPEN(1, FORME' FORVATTED) I unnanmed open

Unit 1 isconnected to file/ t np/ nydi r/ t npfi | e. Without the - a attribute, unit
1 would be connected to filef or t . 1.

When the - a attribute is associated with a file, any Fortran open that is set to connect
to the file causes a connection to the actual file name. Anassi gn command of the
following form causes a connection to file $FI LENV/ j oe:

assign -a $FILENV/joe ftfile

Thisis true when the following statement is executed in a program:

OPEN(I UN, FILE="ftfile")

If the following assi gn command isissued and in effect, any Fortran | NQUI RE
statement whose FI LE= specification isf oo refersto the file named act ual

instead of the file named f oo for purposes of the EXI STS=, OPENED=, or UNI T=
specifiers:

assign -a actual f:foo

If the following assi gn command isissued and in effect, the - a attribute does not
affect | NQUI RE statements with a UNI T= specifier:

assign -a actual ftfile

When the following OPEN statement is executed,
I NQUI RE(UNI T=n, NAME=fname) returnsavalueof ftfi | e infname, asif no
assi gn had occurred:

OPEN(n, file="ftfile')

219

Cray Fortran Reference Manual

The I/0 library routines use only the actua file (- a) attributes from the assign
environment when processing an | NQUI RE statement. During an | NQUI RE
statement that contains a FI LE= specifier, the I/O library searches the assign
environment for areference to the file name that the FI LE= specifier supplies.

If an assign-by-filename exists for the file name, the 1/0O library determines
whether an actual name from the - a option is associated with the file name. If the
assign-by-filename supplied an actua name, the 1/0O library uses that name to return
values for the EXI ST=, OPENED=, and UNI T= specifiers; otherwise, it usesthefile
name. The name returned for the NAME= specifier is the file name supplied in the
FI LE= specifier. The actual file nameis not returned.

12.2.2 Specifying File Structure

220

A file structure defines the way records are delimited and how the end-of-fileis
represented. Theassi gn command supports two mutually exclusive file structure
options:

e Toselect astructure using an FFIO layer, useassi gn - F
* To select astructure explicitly, useassi gn -s

Using FFIO layersis more flexible than selecting structures explicitly. FFIO allows
nested file structures, buffer size specifications, and support for file structures not
available through the - s option. You will also redlize better 1/0O performance by
using the - F option and FFIO layers.

For more information about the - F option and FFIO layers, see Chapter 13, Using
Fexible File I/0 (FFIO) on page 233.

The remainder of this section coversthe - s option.

Fortran sequential unformatted 1/0O uses four different file structures. f 77 blocked
structure, t ext structure, unblocked structure, and COS blocked structure. By
default, the f 77 blocked structure is used unless afile structure is selected at open
time. If an aternative file structure is needed, the user can select afile structure by
using the - s or - F option on the assi gn command.

The- s and - F options are mutually exclusive. The following examples show how to
use different assi gn command options to select different file structures.

Structure assi gn command

F77 blocked

assign -F f77

text

assign -F text
assign -s text

S-3901-71

Enhanced 1/O: Using the Assign Environment [12]

S-3901-71

unblocked

assign -F system
assign -s unbl ocked

COS blocked

assign -F cos
assign -s cos

The following examples show how to adjust blocking.

To select an unblocked file structure for a sequential unformatted file:

IUN = 1
CALL ASNUNI T(I'UN, ' -s unbl ocked', | ER)
OPEN(| UN, FORM=' UNFORVATTED' , ACCESS=" SEQUENTI AL")

You can also usetheassi gn -s u command to specify the unblocked file
structure for a sequential unformatted file. When this option is selected, 1/O is
unbuffered. Each Fortran READ or WRI TE statement resultsin ar ead(2) or
wri t e(2) system call such as the following:

CALL ASNFILE('fort.1','-s u',lER)
OPEN(1, FORM=' UNFORMATTED , ACCESS=" SEQUENTI AL")

To assign unit 10 a COS blocked structure:

assign -s cos u:10

The full set of options alowed with theassi gn - s command are as follows:

bi n (not recommended)
bl ocked

cos

sbin

t ext

unbl ocked

221

Cray Fortran Reference Manual

Table 25. Fortran Access Methods and Options

Access and form assi gn -s ftdefaults assign -s ftoptions
Sequential unformatted, BUFFER | N bl ocked /cos /f77 bi n
and BUFFER OUT sbin

u

unbl ocked
Direct unformatted unbl ocked bi n

shin

u

unbl ocked
Sequential formatted t ext bl ocked

cos

shi n/t ext
Direct formatted t ext sbi n/t ext

12.2.2.1 Unblocked File Structure

222

A file with an unblocked file structure contains undelimited records. Because it
does not contain any record control words, it does not have record boundaries. The
unblocked file structure can be specified for a file opened with either unformatted
sequential access or unformatted direct access. It isthe default file structure for afile
opened as an unformatted direct-access file.

Do not attempt to use a BACKSPACE statement to reposition a file with an unblocked
file structure. Since record boundaries do not exist, you cannot reposition the file to
a previous record.

BUFFER | Nand BUFFER OUT statements can specify afile having an unbuffered
and unblocked file structure. If the fileis specified with assi gn -s u, BUFFER
| Nand BUFFER QUT statements can perform asynchronous unformatted 1/O.

There are several ways to use the assi gn(1) command to specify unblocked file
structure. All ways result in asimilar file structure but with different library buffering
styles, use of truncation on afile, alignment of data, and recognition of an end-of-file
record in the file. The following unblocked data file structure specifications are
available:

Specification Structure

assign -s unbl ocked Library-buffered

assign -F system No library buffering

assign -s shin Buffering that is compatible with

standard 1/O; for example, both library
and system buffering

S-3901-71

Enhanced 1/O: Using the Assign Environment [12]

The type of file processing for an unblocked data file structure depends on the
assi gn -s ftoptionthat isdeclared or assumed for a Fortran file.

For more information about buffering, see Specifying Buffer Behavior on page 226.

An /O request for afile specified using theassi gn -s unbl ocked command
does not need to be a multiple of a specific number of bytes. Such afileis truncated
after the last record is written to the file. Padding occurs for files specified with
theassi gn -s bi n command andtheassi gn -s unbl ocked command.
Padding usually occurs when noncharacter variables follow character variablesin an
unformatted direct-access file.

No padding is done in an unformatted sequential access file. An unformatted
direct-access file created by a Fortran program on CLE systems contains records that
are the same length. The end-of-file record is recognized in sequential-accessfiles.

12.2.2.2 assi gn -s sbin File Processing

You canuse anassi gn -s sbi n specification for a Fortran file opened with
either unformatted direct access or unformatted sequential access. The file does not
contain record delimiters. Thefile created for assi gn - s sbi ninthisinstance
has an unblocked data file structure and uses unblocked file processing.

Theassi gn -s sbi n option can be specified for a Fortran file that is declared

as formatted sequential access. Because the file contains records that are delimited
with the new-line character, it is not an unblocked data file structure. It is the same
as atext file structure.

Theassi gn -s sbi n option is compatible with the standard C /O functions.

Note: Cray discouragesthe use of assi gn - s shbi n becauseit typically yields
poor /O performance. If you cannot use an FFIO layer, using assi gn -s text
for formatted filesand assi gn -s unbl ocked for unformatted files usually
produces better 1/0 performance than using assi gn -s sbi n.

12.2.2.3 assi gn -s bin File Processing

An /O request for afilethat is specified withassi gn -s bi n does not need to be
amultiple of a specific number of bytes. Padding occurs when noncharacter variables
follow character variables in an unformatted record.

The /O library uses an internal buffer for the records. If opened for sequential access,
afileisnot truncated after each record is written to the file.

S-3901-71 223

Cray Fortran Reference Manual

12.2.2.4 assign -s u File Processing

Theassi gn -s u command specifies undefined or unknown file processing.
Anassi gn -s u specification can be specified for a Fortran file declared

as unformatted sequential or direct access. Because the file does not contain
record delimiters, it has an unblocked data file structure. Both synchronous and
asynchronous BUFFER | N and BUFFER QUT processing can be used with u file
processing.

Fortran sequential files declared by using assi gn - s u are not truncated after the
last word written. The user must execute an explicit ENDFI LE statement on the file.

12.2.2.5 t ext File Structure

Thet ext file structure consists of a stream of 8-bit ASCII characters. Every record
in atext fileis terminated by a newline character (\ n, ASCII 012). Some utilities
may omit the newline character on the last record, but the Fortran library treats such
an occurrence as a malformed record. Thisfile structure may be specified for afile
that is declared as either formatted sequential access or formatted direct access. It is
the default file structure for formatted sequential access and formatted direct access
files.

Theassi gn -s text command specifiesthe library-buffered text file structure.
Both library and system buffering are done for all text file structures.

An /O request for afileusing assi gn -s t ext doesnot need to be amultiple
of a specific number of bytes.

You cannot use BUFFER | N and BUFFER OUT statements with this structure. You
can use a BACKSPACE statement to reposition a file with this structure.

12.2.2.6 cos or bl ocked File Structure

224

Thecos or bl ocked file structure uses control words to mark the beginning of each
sector and to delimit each record. You can specify thisfile structure for afile that is
declared as unformatted sequential access. Synchronous BUFFER | N and BUFFER
QUT statements can create and access files with thisfile structure.

You can specify this file structure with one of the following assi gn(1) commands:

assign -s cos

assign -s bl ocked

assign -F cos

assign -F bl ocked

These four assi gn commands result in the same file structure.
An /O request on a blocked fileislibrary buffered.

Inacos file structure, one or more ENDF| LE records are allowed. BACKSPACE
statements can be used to reposition afile with this structure.

S-3901-71

Enhanced 1/O: Using the Assign Environment [12]

A blocked fileis a stream of words that contains control words called Block Control
Word (BCW) and Record Control Words (RCW) to delimit records. Each record is
terminated by an EOR (end-of-record) RCW. At the beginning of the stream, and
every 512 words thereafter (including any RCWs), aBCW isinserted. An end-of-file
(EOF) control word marks a special record that is aways empty. Fortran considers
this empty record to be an endfile record. The end-of-data (EOD) control word is
always the last control word in any blocked file. The EOD is aways immediately
preceded by either an EOR, or by an EOF and a BCW.

Each control word contains a count of the number of datawords to be found between
it and the next control word. In the case of the EOD, this count is 0. Because thereis
aBCW every 512 words, these counts never point forward more than 511 words.

A record always begins at a word boundary. If arecord ends in the middle of aword,
the rest of that word is zero filled; the ubc field of the closing RCW contains the
number of unused bits in the last word.

The following illustration and table is a representation of the structure of a BCW.

m unused bdf unused bn f wi
(4) (7) (1) (19) (24) 9)
Field Bits Description
m 0-3 Type of control word; O for BCW
bdf 11 Bad Dataflag (1-bit, 1=bad data)
bn 31-54 Block number (modulo 224)
fwi 55-63 Forward index; the number of words to the next control word
The following illustration and table is a representation of the structure of an RCW.
m ubc tran bdf Srs unused pfi pri f Wi
(4) (6) (1) (1) (1) (7) (20) (15) (9)
Field Bits Description
m 0-3 Type of control word,; 108 for EOR, 168 for EOF, and 17, for EOD
ubc 49 Unused bit count; number of unused low-order bitsin last word of previous
record
tran 10 Transparent record field (unused)
bdf 11 Bad data flag (unused)
S-3901-71 225

Cray Fortran Reference Manual

Field Bits Description

srs 12 Skip remainder of sector (unused)

pfi 20-39 Previous file index; offset modulo 2% to the block where the current file starts
(as defined by the last EOF)

pri 40-54 Previous record index; offset modulo 2'° to the block where the current record
starts

f wi 55-63 Forward index; the number of words to the next control word

12.2.3 Specifying Buffer Behavior

226

A buffer is atemporary storage location for data while the data is being transferred.
Buffers are often used for the following purposes:

Small /O requests can be collected into a buffer, and the overhead of making
many relatively expensive system calls can be greatly reduced.

Many data file structures such as cos contain control words. During the write
process, a buffer can be used as awork area where control words can be inserted
into the data stream (a process called blocking). The blocked data is then
written to the device. During the read process, the same buffer work area can be
used to remove the control words before passing the data on to the user (called
deblocking).

When data access is random, the same data may be requested many times. A
cache is abuffer that keeps old requests in the buffer in case these requests are
needed again. A cachethat is sufficiently large or efficient can avoid alarge part
of the physical 1/0 by having the dataready in a buffer. When the data is often
found in the cache buffer, it is referred to as having a high hit rate. For example,
if the entire file fits in the cache and the file is present in the cache, no more
physical requests are required to perform the 1/O. In this case, the hit rate is 100%.

Running the 1/0O devices and the processors in parallel often improves
performance; therefore, it is useful to keep processors busy while datais
being moved. To do this when writing, data can be transferred to the buffer at
memory-to-memory copy speed. Use an asynchronous I/0 request. The control
is then immediately returned to the program, which continues to execute as if
the I/0O were complete (a process called write-behind). A similar process called
read-ahead can be used while reading; in this process, datais read into a buffer
before the actual request isissued for it. When it is needed, it is already in the
buffer and can be transferred to the user at very high speed.

S-3901-71

Enhanced 1/O: Using the Assign Environment [12]

* Whendirect /O isenabled (assi gn - B on), datais staged in the system
buffer cache. While this can yield improved performance, it also means that
performance is affected by program competition for system buffer cache. To
minimize this effect, avoid public caches when possible.

* Inmany cases, the best asynchronous 1/0 performance can be realized by
using the FFIO cachea layer (assi gn - F cachea). Thislayer supports
read-ahead, write-behind, and improved cache reuse.

The size of the buffer used for a Fortran file can have a substantial effect on 1/0
performance. A larger buffer size usually decreases the system time needed to
process sequential files. However, large buffers increase a program's memory
usage; therefore, optimizing the buffer size for each file accessed in a program on a
case-by-case basis can help increase I/O performance and minimize memory usage.

The- b option on the assi gn command specifies a buffer size, in blocks, for the
unit. The - b option can be used with the - s option, but it cannot be used with the - F
option. Use the - F option to provide /O path specifications that include buffer sizes;
the - b, and - u options do not apply when - F is specified.

For more information about the selection of buffer sizes, see the assi gn(1) man
page.

The following examples of buffer size specification illustrate using theassi gn -b
and assi gn - F options:

e If unit 1isalarge sequential file for which many Fortran READ or WRI TE
statements are issued, you can increase the buffer size to alarge value, using the
following assi gn command:

assign -b buffer-size u: buffer-count

« |If thefilef oo isasmall file or is accessed infrequently, you can minimize the
buffer size using the following assi gn command:

assign -b 1 f:foo

12.2.3.1 Default Buffer Sizes

The Fortran 1/0O library automatically selects default buffer sizes according to

file access type as shown in Table 26. You can override the defaults by using the
assi gn(1) command. The following subsections describe the default buffer sizes
on various systems.

Note: One block is 4,096 bytes on CLE systems.

S-3901-71 227

Cray Fortran Reference Manual

Table 26. Default Buffer Sizes for Fortran 1/O Library Routines

Access Type Default Buffer Size
Sequential formatted 16 blocks (65,536 bytes)
Sequential unformatted 128 blocks (524,288 bytes)
Direct formatted The smaller of:

e Therecord lengthin bytes+ 1

* 16 blocks (65,536 bytes)
Direct unformatted The larger of:

» Therecord length
e 16 blocks (65,536 bytes)

Four buffers of default size are allocated. For more information, see the description of
the cachea layerinthei ntr o_f f i o(3F) man page.

12.2.3.2 Library Buffering

228

The term library buffering refers to a buffer that the 1/0 library associates with afile.
When afileis opened, the 1/O library checks the access, form, and any attributes
declared on theassi gn command to determine the type of processing that should be
used on the file. Buffers are an integral part of the processing.

If thefile is assigned with one of the following assi gn(1) options, library buffering
is used:

-s bl ocked

- F spec (buffering as defined by spec)
-S coS

-s bin

-s unbl ocked

The - F option specifies flexible file 1/O (FFIO), which uses library buffering if the
specifications selected include a need for buffering. In some cases, more than one
set of buffers might be used in processing afile. For example, the- F buf a, cos
option specifies two library buffers for aread of ablank compressed COS blocked
file. One buffer handles the blocking and deblocking associated with the COS
blocked control words, and the second buffer is used as awork areato process blank
compression. In other cases (for example, - F syst en), no library buffering occurs.

S-3901-71

Enhanced 1/O: Using the Assign Environment [12]

12.2.3.3 System Cache

The operating system uses a set of buffers in kernel memory for 1/O operations.
These are collectively called the system cache. The I/O library uses system calls
to move data between the user memory space and the system buffer. The system
cache ensures that the actual 1/0 to the logical device iswell formed, and it tries to
remember recent data in order to reduce physical 1/0 requests.

Thefollowing assi gn(1) command options can be expected to use system cache:
-s sbin
- F spec (FFIO, depends on spec)

For theassi gn - F cachea command, alibrary buffer ensures that the actual
system calls are well formed and the system buffer cache is bypassed. Thisis not true
fortheassi gn -s u option. If you plantouseassi gn -s u to bypassthe
system cache, all requests must be well formed.

12.2.3.4 Unbuffered I/O

The simplest form of buffering is none at all; this unbuffered 1/0 is known as direct
I/O. For sufficiently large, well-formed requests, buffering is not necessary and can
add unnecessary overhead and delay. The following assi gn(1) command specifies
unbuffered 1/O:

assign -s u

Usetheassi gn command to bypass both library buffering and the system cache for
al well-formed requests. The datais transferred directly between the user data area
and the logical device. Reguests that are not well formed will result in 1/O errors.

12.2.4 Specifying Foreign File Formats

S-3901-71

The Fortran 1/O library can read and write files with record blocking and data
formats native to operating systems from other vendors. Theassi gn - F command
specifies aforeign record blocking; theassi gn - C command specifies the type of
character conversion; the - N option specifies the type of numeric data conversion.
When - N or - Cis specified, the datais converted automatically during the processing
of Fortran READ and VWRI TE statements. For example, assume that arecord in file

f gnfi | e contains the following character and integer data:

character*4 ch

i nteger int

open(iun, FILE="fgnfile', FORME' UNFORVATTED)
read(iun) ch, int

Use the following assi gh command to specify foreign record blocking and foreign
data formats for character and integer data:

assign -F ibmvbs -Nibm-C ebcdi c fgnfile

229

Cray Fortran Reference Manual

One of the most common uses of theassi gn command isto swap big-endian for
little-endian files. To access hig-endian unformatted files on a little-endian system
such as the Cray XT, use the following command:

assi gn -N swap_endi an fgnfile

This assumes the fileisanormal f 77 unformatted file with 32-bit record control
images with a byte count. The library routines swap both the control images and
the data when reading or writing the file.

If al unformatted sequentia files are the opposite endianness, use the following
command:

assign -N swap_endi an g:su

12.2.5 Specifying Memory Resident Files

Theassi gn - F nr command specifies that afile will be memory resident.
Because the nr flexiblefile 1/O layer does not define a record-based file structure, it
must be nested beneath afile structure layer when record blocking is needed.

For example, if unit 2 is a sequential unformatted file that is to be memory resident,
the following Fortran statements connect the unit:

CALL ASNUNIT (2,'-F cos,mm', |1 ER)
OPEN(2, FORM=' UNFORVATTED')

The-F cos, mr specification selects COS blocked structure with memory
residency.

12.2.6 Using and Suppressing File Truncation

Theassi gn - T option activates or suppresses truncation after the writing of a
sequential Fortran file. The- T on option specifies truncation; this behavior is
consistent with the Fortran standard and is the default setting for most assi gn - s
f s specifications.

Theassi gn(1) man page lists the default setting of the - T option for each-s fs
specification. It aso indicates if suppression or truncation is allowed for each of
these specifications.

FFIO layers that are specified by using the - F option vary in their support for
suppression of truncation with- T of f .

Figure 3 summarizes the available access methods and the default buffer sizes.

230 S-3901-71

Enhanced I/O: Using the Assign Environment [12]

Figure 3. Access Methods and Default Buffer Sizes

Blocked Unblocked

Access method Blocked | Blocked Text Undef Binary Unblocked Buffer size

assi gn option -F f77 | -s cos | -s text -su -s bin |-s unbl ocked for default ™
Formatted sequential 1/O Valid

WRI TE(9, 20) Valid Default 16

PRI NT

Formatted direct I/O Valid Valid Valid min(recl+1, 8) bytes

WRI TE(9, 20, REC=) Default
Unformatted sequential /O] Valid

VIRl TE(9) Default Valid Valid Valid Valid 128
Unformatted direct 1/0 : : Valid

VIR TE(9, REC=) Valid Valid Default max(16, recl) blocks
Buffer in/buff t Valid Valid Valid Valid Valid 16

uffer in/buffer ou Default
Control words Yes Yes NEWLI NE No No No
Library buffering Yes Yes Yes No Yes Yes
System cached Yes No Yes Not Nott Varies
BACKSPACE Yes Yes Yes No No No
Record size Any Any Any Any 8*n Any
Default library buffer size* 16 48 16 None 16 16

T Cached if not well-formed
Tt No guarantee when physical size not 512 words
* In units of 4096 bytes, unless otherwise specified

12.3 Defining the Assign Environment File

Theassi gn command information is stored in the assign environment file. The
location of the active assign environment file must be provided by setting the
FI LENV environment variable to the desired path and file name.

12.4 Using Local Assign Mode

The assign environment information is usually stored in the . assi gn environment
file. Programs that do not require the use of the global . assi gn environment

file can activate local assign mode. If you select local assign mode, the assign
environment will be stored in memory. Thus, other processes can not adversely affect
the assign environment used by the program.

The ASNCTL (3f) routine selects local assign mode when it is called by using one of
the following command lines:

CALL ASNCTL(' LOCAL', 1,I1ER)
CALL ASNCTL("' NEWLOCAL', 1, | ER)

S-3901-71 231

Cray Fortran Reference Manual

Example 4. Local assign mode

In the following example, a Fortran program activates local assign mode and then
specifies an unblocked data file structure for a unit before opening it. The- 1 option
is passed to ASNUNI T to ensure that any assign attributes continue to have an effect
at the time of file connection.

C Switch to | ocal assign environnent
CALL ASNCTL(' LOCAL', 1,1ER)
IUN = 11

C Assign the unbl ocked file structure
CALL ASNUNIT(IUN, ' -1 -s unbl ocked',|ER)

C Qpen unit 11
OPEN(| UN, FORME' UNFORVATTED)

If aprogram contains all necessary assign statements as calls to ASSI GN, ASNUNI T,
and ASNFI LE, or if aprogram requires total shielding from any assi gn commands,
use the second form of a call to ASNCTL, asfollows:

C New (enpty) local assign environnent
CALL ASNCTL(' NEWLOCAL' , 1, | ER)
IUN = 11

C Assign a large buffer size
CALL ASNUNIT(IUN,' -b 336', I ER)
C Open unit 11
OPEN(| UN, FORME' UNFORVATTED)

232 S-3901-71

Using Flexible File 1/O (FFIO) [13]

13.1 Understanding FFIO

S-3901-71

The flexible file 1/O (FFIO) system is based on the concept that for al 1/0, a
series of processing steps must be performed in order to transfer the user data
between the user's memory and the desired I/O device. 1/O can be the slowest part
of acomputational process and the speed of 1/0 access methods varies depending
on computational processes, but by using FFIO, it is often possible to enhance a
program's I/O performance without modifying or recompiling source code.

Figure 4 shows the typical flow of data from the user's variables to and from the I/O
device.

Figure 4. Typical Data Flow

User’s Kernel
job

Think of each box as a stopover point for the data, and each transition between
stopovers as a processing step. The actual 1/0 path can skip one or more stepsin this
process, depending on the 1/O features being used at a given point in agiven program.

Each transition has benefits and costs, and different applications may use the 1/0
system in different ways. For example, if 1/O requests are large, the library buffer is
probably unnecessary, because the main use of the library buffer isto reduce the
number of system calls by consolidating smaller requests. To achieve better 1/0
throughput with large /O requests, do not use library buffering.

On the other hand, if 1/0 regquests are small, then using the library buffer improves
performance by eliminating the overhead associated with making a system call for
each 1/0 request.

233

Cray Fortran Reference Manual

234

The assign environment and FFIO enable you to modify the /O process for existing
programs without changing or recompiling source code. The difference is that the
assi gn(1) command lets you modify the total 1/0 path, by establishing an overall
I/0 environment, while the FFIO system lets you specify 1/O behavior at each
stopover point along the path.

To specify FFIO layers, usethe assi gn - F command with a comma-delimited
list of FFIO specifications. For example:

assi gn -F specl, spec2, spec3. . .

Each spec in thelist is a processing step that requests one |I/O layer, or logical
grouping of layers. The layer specifies the operations performed on the data asiit is
passed between the user and the 1/0O device. A layer refers to the specific type of
processing being done.

In some cases, the name corresponds directly to the name of one layer. In other cases,
however, specifying one layer invokes the routines used to pass the data through
multiple layers. Seethei nt r o_f f i o(3f) man page for details about using the
assi gn command - F option.

Processing steps are ordered as if the - F side (the left side) is the user and the
system/device is the right side, asin the following example:

assign -F user, bufa, system

With this specification, a\WRI TE operation first performsthe user operation on the
data, then performs the buf a operation, and then sends the data to the system. Ina
READ operation, the process is performed from right to left. The data moves from
the system to the user. The layers closest to the user are higher-level layers; those
closer to the system are lower-level layers.

The FFIO system has an internal model of the world of data, which it maps to
any given actual logical file type. The following four concepts are essential to
understanding the inner workings of the layers.

Concept Definition
Data Datais a stream of hits.
Record marks

End-of-record (EOR) marks are boundaries between logical records.

File marks End-of-file (EOF) marks are special types of record marks that exist
in some file formats.

End-of-data (EOD)

An end-of-data (EOD) is a point immediately beyond the last data
bit, EOR, or EOF in thefile.

All files are streams of 0 or more bits that may contain record and/or file marks.

S-3901-71

Using Flexible File /O (FFIO) [13]

Individual layers have varying rules about which of these things can appear and in
which order they can appear in afile.

Both Fortran programmers and C programmers can use FFIO. Fortran users can use
theassi gn(1) command to specify FFIO options, while C users use FFIO layers by
calling the FFIO routines directly (f f open(3c), f f r ead(3c), and f f wr i t e(3c)).

You can use FFIO with the Fortran I/O forms listed in the following table. For each
form, the equivalent assi gn command is shown.

Fortran 1/0O Form Equivalent assi gn Command
Buffer 110 assign -F f77
Unformatted sequential assign -F f77
Unformatted direct access assign -F cache
Formatted sequential assign -F text

Namelist assign -F text
List-directed assign -F text

13.2 Using FFIO Layers

S-3901-71

Theassi gn - F command specification list defines all the processing steps the I/0
system performs. If assi gn - F isspecified, any default processing is overridden.
For example, unformatted sequentia 1/0 is assigned a default structure of f 77, which
isthesame asisused if the- F f 77 option is specified.

The FFIO system provides detailed control over 1/0O processing requests. However,
to effectively use the f 77 option (or any FFIO option), you must understand the
I/O processing details.

For example, suppose you are making large 1/0 requests and do not require buffering
or blocking. You can specify:

assign -F system

Thesyst emlayer is ageneric system interface that chooses an appropriate layer for
your file. If thefileison adisk, it choosesthesyscal | layer, which maps each user
I/O request directly to the corresponding system call. A Fortran READ statement is
mapped to one or morer ead(2) system calls and a Fortran VRl TE statement to one
or morew i t e(2) system calls.

If you want your file to be F77 blocked (the default blocking for Fortran unformatted
1/0), you can specify:

assign -F f77

235

Cray Fortran Reference Manual

If you want your file to be COS blocked, you can specify:

assign -F cos

Note: Inadl assi gn - F specifications, the syst emlayer is the implied
last layer. The above example is functionally identical to assi gn - F
cos, system

These two specifications request that each WRI TE request first be blocked (blocking
adds control words to the data in the file to delimit records), and then thef 77 layer
sends the blocked datato the syst emlayer. The syst emlayer passes the data

to the device.

The process is reversed for READ requests. For these requests, the syst emlayer
first retrieves blocked data from the file, and then the blocked datais passed to the
next higher layer (thef 77 layer), whereit is deblocked. The deblocked dataiis then
presented to the user.

13.2.1 Available I/O Layers

236

Several different layers are available for the spec argument. Each layer invokes one
or more layers, which then handle the data they are given in the appropriate manner.
For example, thesyscal | layer essentially passes each request to an appropriate
system call. Thenr layer triesto hold an entire file in a buffer that can change size
as the size of the file changes; it aso limits actual 1/O to lower layers so that 1/0
occurs only at open, close, and overflow.

Table 27 defines the classes you can specify for the spec argument to the assi gn
- F option. For detailed information about each layer, see Chapter 14, FFIO Layer
Reference on page 247.

Table 27. FFIO Layers

Layer Function

buf a Asynchronous buffering layer

cache Memory-cached I/O

cachea Asynchronous memory-cached 1/0O

cos or bl ocked COS blocking; thisiis the default for Fortran

sequential unformatted 1/0 on UNICOS and
UNICOS/mk systems

event I/0O monitoring layer

f77 FORTRAN record blocking; thisis the default for
Fortran sequential unformatted 1/0 on CLE systems
and the common blocking format used by most
FORTRAN compilers

S-3901-71

Using Flexible File /O (FFIO) [13]

Layer Function

fd File descriptor open

gl obal Distributed cache layer for MPI, SHMEM, OpenMP,
and Coarray Fortran

i bm IBM file formats

nT Memory-resident file handlers

nul | Syntactic convenience for users (does nothing)

site User-defined site-specific layer

syscal | System call 1/0

system Generic system interface

t ext Newline separated record formats

user User-defined layer

VI VAX/VMSfile formats

13.2.2 Specifying Layered I/0O Options

S-3901-71

You can modify the behavior of each I/O layer. The following spec format shows how
to specify a class and one or more opt and num fields:

class.optl.opt2: numl: num2: num3

For class, you can specify one of the layerslisted in Table 27. Each layer has a
different set of options and numeric parameters, because each layer performs different
duties. The following rules apply to the spec argument:

* The class and opt fields are case-insensitive. For example, the following two
specs are identical:

| bm VBs: 100: 200
| BM vbS: 100: 200

* Theopt and num fields are usually optional, but sufficient separators must be
specified as placeholders to eliminate ambiguity. For example, the following
specs are identical:

c0S..::40, cos.::40
cos:: 40

In this example, optl, opt2, numl, and num2 can assume default values.

» To specify more than one spec, use commas between specs. Within each spec
you can specify more than one opt and num. Use periods between opt fields,
and colons between num fields.

237

Cray Fortran Reference Manual

The following options al have the same effect, specifying the virs layer and setting
theinitial alocation to 100 blocks:

-F vns: 100
-F vms. : 100
-F vms..: 100

The following option contains one spec for an vins layer that has an opt field of scr
(which requests scratch file behavior):

-F vms. scr

The following option requests two classes with no opts:

-F f77,vns

The following option contains two specs and requests two layers. cos and virs.
The cos layer has no options; the virs layer has optionsscr and ovf | , which
specify that the file isascratch file that is allowed to overflow and that the maximum
alocation is 1000 sectors:

-F cos, vrs. scr.ovfl:: 1000

When possible, the default settings of the layers are set so that optiona fields are
seldom needed.

13.3 Using FFIO with Common File Structures

13.3.1 Reading and Writing Text Files

238

Usethef dcp command to copy files while converting record blocking.

Most human-readable files are in text format; this format contains records comprised
of ASCII characters with each record terminated by an ASCI| line-feed character,
which isthe newline character in UNIX. The FFIO specification that selects thisfile
structureisassi gn -F text.

The FFIO package is seldom required to handle text files. In the following types of
cases, however, using FFIO may be necessary:

e Optimizing text file access to reduce 1/0 wait time
¢ Handling multiple EOF records in text files
e Converting data files to and from other formats

1/O speed isimportant when optimizing text file access. Using assi gn - F t ext
is expensive in terms of processor time but enables you to use memory-resident files,
which may reduce or eliminate I/O wait time.

S-3901-71

Using Flexible File /O (FFIO) [13]

The FFIO system can also process text files with embedded EOF records. The ~e
string alone in atext record is used as an EOF record. Editors such as sed(1) and
other standard utilities can process these files, but this processing is sometimes easier
with FFIO.

Thet ext layer isuseful in conjunction with thef dcp command. Thet ext layer
provides a standard output format. Many forms of data that are not considered foreign
are sometimes encountered in a heterogeneous computing environment: if arecord
format can be described with an FFIO specification, it usually can be converted to
text format by using a script similar to the following example:

OTHERSPEC=$1

I NFI LE=$2

QUTFI LE=%$3

assign -F ${OTHERSPEC} ${I| NFI LE}
assign -F text ${OUTFILE}

fdcp ${INFILE} ${QUTFI LE}

For example, if your script isnamedt 0. t ext , you would invoke it as follows:

%to.text cos data cos data_text

13.3.2 Reading and Writing Unblocked Files

The simplest datafile format is the binary stream or unblocked data. It contains no
record marks, file marks, or control words. Thisis usualy the fastest way to move
large amounts of data because it involves a minimal amount of processor and system
overhead.

The FFIO package provides several layers designed specifically to handle a binary
stream of data. These layersaresyscal |, nr, buf a, cache, cachea, and

gl obal . These layers behave the same from the user's perspective, but use different
system resources. The unblocked binary stream is usually used for unformatted
datatransfer; it is not usually useful for text files or for when record boundaries or
backspace operations are required. The complete burden is placed on the application
to know the format of the file and the structure and type of the data it contains.

Thislack of structure allows flexibility. For example, afile declared with one of these
layers can be manipulated as a direct-access file with any record length.

In this context f dcp can be called to do the equivalent of the cp(1) command, but
only if theinput file is abinary stream, or used to remove blocking information, but
only if the output file is a binary stream.

S-3901-71 239

Cray Fortran Reference Manual

13.3.3 Reading and Writing Fixed-length Records

The most common use for fixed-length record filesis for Fortran direct access. Both
unformatted and formatted direct-access files use aform of fixed-length records.
The simplest way to handle these files with the FFIO system is with binary stream
layers, such assyst em syscal | , cache, cachea, gl obal , and nT. These
layers allow any requested pattern of access and also work with direct-accessfiles.
Thesyscal | and syst emlayers, however, are unbuffered and do not give optimal
performance for small records.

The FFIO system also directly supports some fixed-length record formats.

13.3.4 Reading and Writing Blocked Files

Thef 77 blocking format is the default file structure for all Fortran sequential
unformatted files. Thef 77 layer is provided to handle these files.

Thef 77 layer is the default file structure on Cray systems. If you specify another
layer, such as nr , you may have to specify af 77 layer to get f 77 blocking.

13.4 Tips for Enhancing I/O Performance

FFIO can be used to enhance performance in a program without changing or
recompiling the source code.

13.4.1 Buffer Size Considerations

In the FFIO system, buffering is the responsibility of the individual layers; therefore,
you must understand the individual layers in order to control the use and size of
buffers.

The cos layer has high payoff potential to the user who wants to extract top
performance by manipulating buffer sizes. Asthe following example shows, the cos
layer accepts a buffer size as the first numeric parameter:

assign -F cos:42 u:1l

If the buffer is sufficiently large, the cos layer also lets you keep an entire filein the
buffer and avoid almost all 1/O operations.

13.4.2 Removing Blocking

I/O optimization usually consists of reducing overhead. One part of the overhead in
doing 1/O is the processor time spent in record blocking. For many filesin many
programs, this blocking is unnecessary. If thisisthe case, the FFIO system can be
used to deselect record blocking and thus obtain performance advantages.

240 S-3901-71

Using Flexible File /O (FFIO) [13]

The following layers offer unblocked data transfer:

Layer Definition

syscal | System call 1/0

buf a Buffering layer

cachea Asynchronous cache layer
cache Memory-resident buffer cache
gl obal SHMEM and MPI cache layer
nT Memory-resident (MR) 1/0

You can use any of these layers alone for any file that does not require the existence
of record boundaries. This includes applications written in C that require a byte
stream file.

13.4.2.1 The syscal | Layer

Thesyscal | layer offersasimple, direct system interface with a minimum of
system and library overhead. If requests are larger than approximately 64 K, this
method can be appropriate.

13.4.2.2 The buf a and cachea Layers

Thebuf a and cachea layers permit efficient file processing. Both layers provide
asynchronous buffering managed by the library, and the cachea layer allows
recently accessed parts of afileto be cached in memory.

The number of buffers and the size of each buffer are tunable. In the buf a:bs:nbufs
or cachea:bs:nbufs FFIO specifications, the bs argument specifies the sizein
4096-byte blocks of each buffer. The default depends onthest bl ksi ze field
returned from a st at (2) system call of thefile; if this return valueis 0, the default
is 8 for al files. The nbufs argument specifies the number of buffersto use. buf a
defaults to 2 buffers, while cachea defaults to 512 buffers.

13.4.2.3 The nr Layer

S-3901-71

Thenr layer lets you use main memory as an 1/O device for many files. When used
in combination with the other layers, this permits cos blocked files, text files, and
direct-access files to reside in memory without recoding. This can result in improved
performance for thefile, or part of afile, that resides in memory.

The nr layer features both scr and save mode and directs overflow to the next
lower layer automatically.

241

Cray Fortran Reference Manual

Theassi gn - F command specifies the entire set of processing steps that
are performed when /O is requested. If afile is blocked, you must specify the
appropriate layer for the handling of block and record control words as in the
following examples:

assign -F f77,nr u:1l
assign -F cos,nr fort.1

Sample Programs on page 244 contains several nt program examples.

13.4.2.4 The gl obal Layer (Deferred Implementation)

Thegl obal layer isacaching layer that distributes data across al multiple SHMEM
or MPI processes. Open and close operations require participation by all processes
that access the file; al other operations are performed independently by one or more
processes. File positions can be private to a process or global to all processes.

You can specify both the cache size and the number of cache pages to use. Since
this layer is used by parallel processes, the actual number of cache pages used is the
number specified times the number of processes.

13.4.2.5 The cache Layer

242

The cache layer permits efficient file processing for repeated access to one or more
regions of afile. It isalibrary-managed buffer cache that contains a tunable number
of pages of tunable size.

To specify the cache layer, use the following option:

assign -F cache[:[bs][:[nbufs]]]

The bs argument specifies the size in 4096-byte blocks of each cache page; the
default is 16. The nbufs argument specifies the number of cache pagesto use; the
default is4. You can achieve improved 1/O performance by using one or more of
the following strategies:

» Useacache page size that is a multiple of the user's record size. This ensures that
no user record straddles two cache pages. If thisis not possible or desirable, it is
best to allocate a few additional cache pages (nbufs).

e Useanumber of cache pages that is greater than or equal to the number of file
regions the code accesses at one time.

S-3901-71

Using Flexible File /O (FFIO) [13]

S-3901-71

If the number of regions accessed within afile is known, the number of cache pages
can be chosen first. To determine the cache page size, divide the amount of memory
to be used by the number of cache pages. For example, suppose a program uses direct
access to read 10 vectors from afile and then writes the sum to a different file:

i nt eger VECTSI ZE, NUMCHUNKS, CHUNKSI ZE
par anmet er (VECTSI ZE=1000*512)
par amet er (NUMCHUNKS=100)
par amet er (CHUNKSI ZE=VECTSI ZE/ NUMCHUNKS)
read a(CHUNKSI ZE), sum(CHUNKSI ZE)
open(11, access="direct', recl =CHUNKSI ZE* 8)
call asnunit (2,'-s unblocked',ier)
open (2,form=" unformatted')
do i = 1, NUMCHUNKS
sum= 0.0
doj =1,10
read(11, rec=(j-1)* NUMCHUNKS+i) a
sunmFsumta
enddo
wite(2) sum
enddo
end

If 4 MB of memory are allocated for buffers for unit 11, 10 cache pages should be
used, each of the following size:

4vB/ 10 = 400000 bytes = 97 bl ocks

Make the buffer size an even multiple of the record length of 409600 bytes by
rounding it up to 100 blocks (= 409600 bytes), then use the following assi gn
command:

assign -F cache: 100: 10 u: 11

243

Cray Fortran Reference Manual

13.5 Sample Programs

The following examplesillustrate the use of the nr layers.

Example 5. Unformatted direct mr with unblocked file

In the following example, batch job ex8 contains a program that uses unformatted
direct-access I/0 with an nr layer:

#QSUB -r ex8 -1 T 10 -1 Q 500000
#QSUB -eo -0 ex8. out
date
set -Xx
cd $TWMPDI R
cat > ex8.f <<EOF
program exanpl e8
di nensi on r(512)
data r/512*2.0/
open(1, forn=" unformatted' , access="direct',recl=4096)
do 100 i=1, 100
wite(l,rec=i,iostat=ier)r
if(ier.ne.0)then
if(ier.eq.5034)then
print * "overflow to disk at record=",
el se
print * "error on wite=",ier
end if
end if
100 conti nue
do 200 i=100,1,-1

read(1,rec=i,iostat=ier)r
if(ier.ne.0)then
print *,"error on read=",ier
end if
200 conti nue
cl ose(1)
end
EOF
ftn ex8.f -0 ex8 # conpile and conpile
assign -R # reset assign paraneters

assign -F nr.scr.ovfl::50: fort.1
assign file fort.1 to be nr with a
50 block linmt

./ ex8 # execute

The program writes the first 50 blocks of f or t . 1 to the memory-resident layer. The
next 50 blocks overflow the nr buffer and will be written to adisk. Becausethescr
option is specified, the fileisnot saved whenf or t . 1 isclosed.

244 S-3901-71

Using Flexible File /O (FFIO) [13]

S-3901-71

Example 6. Unformatted sequential nt with blocked file

The following program uses an nr layer with unformatted sequential 1/0O:

100

200

program exanpl e4a
i nteger r(512)
data r/512*1. 0/
Reset assign environnent, then assign file without FFIO
to be read back in by subsequent program
call assign('assign -R ,ierl)
call assign('assign -a /tnp/filel -s unblocked f:fort.1',ier2)
if(ierl.ne.0.or.ier2.ne.0)then
print * "assign error"
got 0200
end if
open(1, fornm=" unformatted')
wite out 100 records to disk file: /tnp/filel
do 100 k=1, 100
wite(l)r
conti nue
cl ose(1)
conti nue
end

In the program unit exanpl e4b that follows, the assi gn command arguments
contain the following options to use blocked file structure:

assign -R
assign -a /tnp/filel -F f77, mr.save. ovfl u:3

245

Cray Fortran Reference Manual

246

exanpl e4b writes an unblocked file disk file, / t np/ fi | el. If youwant to use a
blocked file structure, the assi gn command arguments should contain the following
instructions in program unit exanpl e4a:

assign -R
assign -a /tnp/filel f:fort.1

pr ogr am exanpl e4b
integer r(512)
C Reset assign environnent, then assign file
C with an nr |ayer.
call assign('assign -R ,ierl)
call assign('assign -a /tnp/filel
& -F nr.save.ovfl u:3",ier2)
if(ierl.ne.0.or.ier2. ne.0)then
print * "assign error”
got 0300
end if
C open the previously witten file '/tnp/filel",
C load it into nmenory
open(3,forn unformatted')
C read 5 records
do 200 k=1,5
read(3)r1
200 conti nue
rewi nd(3)
cl ose(3)
300 conti nue
end

A sequential formatted file must always have at ext specification before the
residency layer specification so that the I/O library can determine the end of arecord.

S-3901-71

FFIO Layer Reference [14]

S-3901-71

This chapter provides details about each of the following FFIO layers:

Layer
buf a
cache

cachea

Definition
Library-managed asynchronous buffering
Memory-cached layer

Asynchronous memory-cached layer

cos or bl ocked

event
f77
fd

gl obal

i bm

nr

nul |
site
syscal |
system
t ext
user

vins

COS blocking layer

[/0O monitoring layer

Common UNIX Fortran record blocking
File descriptor open layer

Distributed 1/0 for MPI, SHMEM, OpenMP, and Coarray Fortran
programs

IBM file formats
Memory-resident file handlers
Syntactic convenience for users
User-defined site-specific layer
System call 1/0

Generic system layer
Newline-separated record formats
User-defined layer
VAX/VMSfile formats

Characteristics of Layers describes how to interpret the information presented in the
remaining sections of this chapter. Seethei ntro_ffi o(3) man page for more
details about FFIO layers.

247

Cray Fortran Reference Manual

14.1 Characteristics of Layers

In the descriptions of the layers that follow, the Data Manipulation tables use the
following categories of characteristics:

Characteristic Description
Granularity Indicates the smallest amount of data

that the layer can handle. As of the
Programming Environment 5.2 release,
al layers use 8-bit (1-byte) granularity.

Data model Indicates the data model. Three main
data models are discussed in this section.
The first type is the Record model, which
has data with record boundaries and may
have an end-of-file (EOF).

The second type is Stream (a stream of
bits). None of these support the EOF.

The third type is the Filter, which
does not have a data model of its own
but derives it from the lower-level
layers. Filters usually perform a
data transformation (such as blank
COmpression or expansion).

Truncate on write Indicates whether the layer forces an
implied EOD on every write operation
(EOD implies truncation).

Implementation strategy Describes the internal routines that are
used to implement the layer.

The X-records type under
Implementation Strategy (if used in

the tables) refers to a record type

in which the length of the record is
prepended and appended to the record.
For f 77 files, the record length is
contained in 4 bytes at the beginning and
the end of arecord.

248 S-3901-71

FFIO Layer Reference [14]

In the descriptions of the layers, the Supported Operations tables use the following
categories:

Operation
Lists the operations that apply to that particular layer. The following
isalist of supported operations:
ffopen ffcl ose
ffread ffflush
ffreadc f f weof
ffwite ffweod
ffwitec ffseek
ff bksp
Support Uses three potential values: Yes, No, or Passed through. Passed
through indicates that the layer does not directly support the
operation but relies on the lower-level layers to support it.
Used Liststwo values: Yesor No. Yes indicates that the operation is

required of the next lower-level layer. No indicates that the operation
is never required of the lower-level layer. Some operations are

not directly required but are passed through to the lower-layer if
requested of this layer. These are noted in the comments.

Comments Describes the function or support of the layer's function.

On many layers, you can also specify the numeric parameters by using a keyword.

14.2 The buf a Layer

S-3901-71

The buf a layer provides library-managed asynchronous buffering. It is optimized
to perform sequential 1/0O using adaptive 1/0O techniques, meaning the buf a layer
transforms READ and WRI TE requests into read-ahead and write-behind requests.
This can minimize 1/0 wait time and reduce the number of low-level 1/O requests
for some files.

The syntax is as follows:
buf a: [numi1] : [num2]
The keyword syntax is as follows:

buf a[. buf si ze=numl] [. num_buf f er s=num?2]

The numl argument specifies the size, in 4096-byte blocks, of each buffer. The
default buffer size depends on the device on which your fileislocated. The maximum
alowed value on CLE systems 1,073,741,823 bytes. You may not, however, be able
to use avalue this large because this much memory may not be available.

The num2 argument specifies the number of buffersto be used. The default is 2.

249

Cray Fortran Reference Manual

Table 28. Data Manipulation: buf a Layer

Granularity Data model Truncate on write
8 hits Stream No
Table 29. Supported Operations: buf a Layer
Supported operations Required of next lower level?
Operation Supported Comments Used Comments
ffopen Yes Yes
ffread Yes Yes
ffreadc Yes No
ffwite Yes Yes
ffwitec Yes No
ffcl ose Yes Yes
ffflush Yes Yes
f f weof Passed Yes Only if explicitly requested
through
f f weod Yes Yes
ffseek Yes Only if supported by the Yes Only if explicitly requested
underlying layer
ff bksp No NA

14.3 The cache Layer

250

The cache layer improves nonsequential 1/0 by dividing files into cache page-sized
sections and keeping whichever pages are currently being accessed in main memory.
This can significantly improve data reuse, with appropriately configured buffers, and
can also reduce the number of low-level 1/O requests for random access.

When used as the last layer abovethe syst emor syscal | layer, the cache layer
supportsthe assi gn - B option to enable or disable direct I/O.

This layer also offers efficient sequential access when a buffered, unblocked file is
needed. The syntax is as follows:

cache[.type] : [numl] : [num2] [num3]

The keyword syntax is as follows:

cachel[.type] [. page_si ze=numl] [. num_pages=num2
[. bypass_si ze=num3]]

S-3901-71

FFIO Layer Reference [14]

The type argument can be mem which directs cache pages to reside in main memory.
The numl argument specifies the size of each cache page buffer in 4096-byte blocks.
The default is 16 blocks; the maximum allowed value is 2,147,483,647 bytes.
Because of memory limits, you are unlikely to be able to use a value approaching
the maximum size.

The num2 argument specifies the number of cache pages. The default is4. The
num3 argument is the size, in 4096-byte blocks, at which the cache layer attempts
to bypass cache layer buffering. If an I/O request is larger than num3, the request
might not be copied to a cache page. The default is num3=numlxnum?2.

When a cache page must be preempted to allocate a page to the currently accessed
part of afile, the least recently accessed page is chosen for preemption. Every access
stores a time stamp with the accessed page so that the least recently accessed page
can be found at any time.

Table 30. Data Manipulation: cache Layer

Granularity Data model Truncate on write

8 bit Stream No

512 words Stream No

Table 31. Supported Operations: cache Layer
Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ff open Yes Yes

ffread Yes No

ffreadc Yes No

ffwite Yes No

ffwitec Yes No

ffcl ose Yes Yes

ffflush Yes No

f f weof No No

f f weod Yes Yes

ffseek Yes Yes Requires underlying interface to
be a stream

ffbksp No NA

S-3901-71 251

Cray Fortran Reference Manual

14.4 The cachea Layer

Thecachea layer issimilar to the cache layer in that it improves data reuse and
nonsequentia /O by dividing files into cache page-sized sections, then keeping
whichever pages are currently being accessed in main memory. However, like

the buf a layer, it also applies adaptive I/O techniques, transforming READ and

VARl TE operations into read-ahead and write-behinds. Furthermore, unlike the buf a
layer, there can be multiple threads (1/0 chains) of read-aheads and write-behinds,
depending on how the file is being accessed.

Asaresult, thislayer can provide high write performance by asynchronously writing
out selective cache pages. It can also provide high read performance by detecting
sequential read access, both forward and backward. When sequential accessis
detected and when read-ahead is chosen, file page reads are anticipated and issued
asynchronously in the direction of file access.

When used asthe last layer abovethe syst emor syscal | layer, thecachea layer
supportstheassi gn - B option to enable or disable direct /0.

The syntax is as follows:

cachea[type] : [numi] : [num2] : [num3]

The keyword syntax is as follows:

cachea[type] [. page_si ze=numl] [. num_pages=num2] [. max_| ead=num3]
type Directs cache pages to reside in memory (mem).
numl Specifies the size of each cache page buffer in 4,096-byte blocks.

The default is 512. The maximum allowed value is 1,073,741,823.
Because of memory limits, you are unlikely to be able to use the
maximum value.

num?2 Specifies the number of cache pagesto be used. The default is 8.

num3 Specifies the number of cache pages to asynchronously read ahead
when sequential read access patterns are detected. The default is
either (num-2 - 1) or 8, whichever is smaller.

Table 32. Data Manipulation: cachea Layer

Granularity Data model Truncate on write
8 hit Stream No
252 S-3901-71

FFIO Layer Reference [14]

Table 33. Supported Operations: cachea Layer

Supported operations

Required of next lower level?

Operation Supported Comments Used Comments

ff open Yes Yes

ffread Yes No

ffreadc Yes No

ffwite Yes No

ffwitec Yes No

ffcl ose Yes Yes

ffflush Yes No

f f weof No No

f f weod Yes Yes

ffseek Yes Yes Requires that the
underlying interface
be a stream

ffbksp No N/A

14.5 The cos Blocked Layer

The cos layer performs COS blocking and deblocking on a stream of data. The

S-3901-71

general format of the cos specification follows:

cos: [.typel [. numl]

The keyword syntax is as follows:
cos|[. type] [. buf si ze=numl]

The numl argument specifies the working buffer size in 4096-byte blocks.

If not specified, the default buffer size is the larger of the following: the large I/O
size, the preferred 1/0O block size (see the st at (2) man page for details), or 48

blocks. Seethei nt ro_f fi o(3F) man page for more details.

When writing, full buffers are written in full record mode. Reads are always

performed in partial read mode; therefore, you do not have to know the block size to

read it (if the block size islarger than the buffer, partial mode reads ensure that no
parts of blocks are skipped).

253

Cray Fortran Reference Manual

Table 34. Data Manipulation: cos Layer

Granularity Data model Truncateon write Implementation strategy
8 bit Records with multi-EOF Yes cos specific
capability
Table 35. Supported Operations: cos Layer

Supported operations Required of next lower level?
Operation Supported Comments Used Comments
ffopen Yes Yes
ffread Yes Yes
ffreadc Yes No
ffwite Yes Yes
ffwitec Yes No
ffcl ose Yes Yes
ffflush Yes No-op Yes
f f weof Yes No
f f weod Yes Yes Truncation occurs only on close
ffseek Yes Minimal support (see Yes

following note)

ffbksp Yes No records No

Note: seek operations are supported only to allow for rewind (seek(f d, 0, 0))
and seek-to-end (seek(fd, 0, 2)).

14.6 The event Layer

254

The event layer enables you to monitor, on a per-file basis, the I/O activity that
occurs in the I/O layer immediately preceding it. It generates statistics as a text
log file and reports information such as the number of times an event was called,
the event wait time, the number of bytes requested, and so on. You can reguest the
following types of statigtics:

e Alistof al event types
« Event types that occur at least once

« A single-line summary of activitiesthat shows information such as the amount of
data transferred and the data transfer rate.

S-3901-71

FFIO Layer Reference [14]

S-3901-71

Statistics are reported to st der r by default. The FFI O_EVENT _LOGFI LE
environment variable can be used to name afile to which statistics are written by the
event layer. The default action isto overwrite the existing statistics fileif it exists.
You can append reports to the existing file by specifying a plus sign (+) before the
file name, as in this example:

setenv FFI O EVENT_LOGFI LE +savel O

This layer report counts all 1/0 (r ead, wri t e, etc.) and I/O-related (open, cl ose,
fcntl, etc.) requests. These counts represent the number of calls made by the parent
layer above the event layer to the child layer below it. (The terms "above" and
"below" are somewhat arbitrary, with the "higher" layers being closer to the program
or application and the "lower" layers being closer to the operating system.) Both the
numbers and types of requests can change as you move down the FFIO chain, as
FFIO layers will consolidate multiple I/O requests into fewer requests and convert
requests from one type to another (i.e., from synchronous to asynchronous).

Theevent layer is enabled by default and is included in the executable file; you
do not have to relink to study the 1/0 performance of your program. To obtain
event statistics, rerun your program with the event layer specified ontheassi gn
command, asin this example:

assign -F bufa, cachea, event, system
In the above example, the log file will show the I/O activity in the cachea layer.

The syntax for the event layer isasfollows:

event [. type]
There is no alternate keyword specification for this layer.

The type argument selects the level of performance information to be written to the
log file; it can have one of the following values:

Value Definition

nost at No information is reported.

bri ef Generates a report on the amount of data transferred through the
event layer.

summar y (default)
Generates three reports:
e Thebri ef report.
* A report on fileinformation, including the file size.

e Alist of dl thel/O and I/O-related requests that passed through
theevent layer.

255

Cray Fortran Reference Manual

14.7 The f 77 Layer

Thef 77 layer handles blocking and deblocking of the f 77 record type, whichis
common to most UNIX Fortran implementations, for sequential unformatted files.
The syntax for this layer is as follows:

f77] . type] : [numl] : [num2]
The keyword syntax is as follows:
f77].type]l [. recsi ze=numl] [. buf si ze=num2]

type Specifies the record type and can take one of two values:

nonvax Control words in aformat common to computers
such as the MC68000 (big-endian); default.

vax VAX format (byte-swapped) control words.

The specification of vax or nonvax is not relevant to data
conversion.

numl Maximum record size, in bytes. The default is2 MB. The maximum
value that can be specified is4 MB.

num2 Buffer size, in bytes. The default is 65 KB.

To achieve maximum performance, ensure that the working buffer size is large
enough to hold any records that are written plus the control words (control words
consist of two 4-byte fields; one at the beginning of the record and one at the end of
the record). If arecord plus control words are larger than the buffer, the layer must
perform some inefficient operations to do the write. If the buffer is large enough,
these operations can be avoided.

On reads, the buffer size is not as important, although larger sizes will usually
perform better.

Table 36. Data Manipulation: f 77 Layer

Granularity Data model Truncate on write Implementation strategy
8 hits Record Yes X records
Table 37. Supported Operations: f 77 Layer

Supported operations Required of next lower level?
Operation Supported Comments Used Comments
ff open Yes Yes
ffread Yes Yes
ffreadc Yes No

256

S-3901-71

FFIO Layer Reference [14]

Supported operations Required of next lower level?
Operation Supported Comments Used Comments
ffwite Yes Yes
ffwitec Yes No
ffcl ose Yes Yes
ffflush Yes No
f f weof Passed Yes Only if explicitly requested
through
f f weod Yes Yes
ffseek Yes ffseek(fd,O0,0) Yes
equals rewind;
ffseek(fd,O0,2)
seeksto end
ffbksp Yes Only in lower-level No
layer

14.8 The f d Layer

Thef d layer allows the connection of an FFIO file to a system file descriptor. You
must specify the f d layer, as follows:

fd: [numi]

The keyword specification is as follows:

fd[.file_descriptor=numil]

The numl argument must be a system file descriptor for an open file. Thef f open
or f f opens request opens an FFIO file descriptor that is connected to the specified
file descriptor. The file connection does not affect the file whose name is passed to
f f open.

When used as the last layer above the syst emor syscal | layer, thef d layer
supportstheassi gn - B option to enable or disable direct /0.

All other properties of thislayer are the same asthe syst emlayer. See Thesyst em
Layer on page 265 for details.

14.9 The gl obal Layer (Deferred Implementation)

S-3901-71

The gl obal layer is acaching layer that distributes data across all multiple
SHMEM, MPI, OpenMP, or Coarray Fortran processes. Open and close operations
require participation by all processes that access thefile; al other operations are
independently performed by one or more processes.

257

Cray Fortran Reference Manual

The syntax for this layer is as follows:

gl obal [. type] : [numl] : [num2]

The keyword syntax is as follows:

gl obal [. type] [. page_si ze=numl] [. num_pages=num2]

The type argument can be pr i vpos (default), in which the file position is private
to aprocess, or (deferred implementation) gl obpos, in which the file position is
global to all processes.

The numl argument specifies the size in 4096-byte blocks of each cache page. The
default is 16.

The num2 argument specifies the number of cache pages to be used on each process.
The default is 4. If there are n processes, n x num?2 cache pages are used.

num?2 buffer pages are allocated on every process that shares access to a global file.
File pages are direct-mapped onto processes such that page n of the file will aways
be cached on process (n mod NPES), where NPES is the total number of processes
sharing access to the global file. Once the process is identified where caching of the
file page will occur, aleast-recently-used method is used to assign the file page to a
cache page within the caching process.

Table 38. Data Manipulation: gl obal Layer

Granularity Data model Truncate on write

8 hits Stream No

Table 39. Supported Operations: gl obal Layer

Supported operations Required of next lower level?
Operation Supported Comments Used Comments
ff open Yes Yes
ffread Yes No
ffreadc Yes No
ffwite Yes No
ffwitec Yes No
ffclose Yes Yes
ffflush Yes No
f f weof No No
f f weod Yes Yes

258

S-3901-71

FFIO Layer Reference [14]

Supported operations Required of next lower level?
Operation Supported Comments Used Comments
ffseek Yes Yes Requires underlying interface to be
astream
ffbksp No NA

14.10 The i bmLayer

S-3901-71

Thei bmlayer handles record blocking for seven common record types on IBM
operating systems. The general format of the specification follows:

i bm [type] : [numl] : [num2]
The keyword syntax is as follows:
i bnf . type] [. recsi ze=numl] [. mbs=num?2]

The supported type values are as follows:

Vaue Definition

u IBM undefined record type

f IBM fixed-length records

fb IBM fixed-length blocked records

% IBM variable-length records

vb IBM variable-length blocked records

vbs IBM variable-length blocked spanned records

Thef format is fixed-length record format. For fixed-length records, numl isthe
fixed record length (in bytes) for each logical record. Exactly one record is placed
in each block.

Thef b format records are the sasme asf format records except that you can place
more than one record in each block. numl is the length of each logical record. num2
must be an exact multiple of numl.

The v format records are variable-length records. recsize is the maximum number of
bytesin alogical record. num2 must exceed numl by at least 8 bytes. Exactly one
logical record is placed in each block.

The vb format records are variable-length blocked records. This means that you
can place more than one logical record in ablock. numl and num?2 are the same as
with v format.

259

Cray Fortran Reference Manual

The vbs format records have no limit on record size. Records are broken into
segments, which are placed into one or more blocks. huml should not be specified.
When reading, num2 must be at |east large enough to accommodate the largest
physical block expected to be encountered.

The numl field is the maximum record size that may be read or written. Thevbs
record type ignores it.

The num2 (maximum block size) field is the maximum block size that the layer uses
on reads or writes.

Table 40. Values for Maximum Record Size on i bmLayer

Field Minimum Maximum Default Comments

u 1 32,760 32,760

f 1 32,760 None Required

fb 1 32,760 None Required

% 5 32,756 32,752 Default is num2, 8 if not specified
vb 5 32,756 32,752 Default is num2, 8 if not specified
vbs 1 None None No maximum record size

Table 41. Values for Maximum Block Size in i bmLayer

Field Minimum Maximum Default Comments

u 1 32,760 32,760 Should be egqual to numl
f 1 32,760 numl Must be equal to numl
fb 1 32,760 numl Must be multiple of numl
v 9 32,760 32,760 Must be >= numl + 8

vb 9 32,760 32,760 Must be >= numl + 8
vbs 9 32,760 32,760

Table 42. Data Manipulation: i bmLayer

Granularity Data model Truncate on write Implementation strategy
8 bits Record No for f andf b records. Yes f recordsfor f andf b. v recordsfor
for v, vb, and vbs records. u, v, vb,and vbs.

260 S-3901-71

FFIO Layer Reference [14]

Table 43. Supported Operations: i bmLayer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments

ff open Yes Yes

ffread Yes Yes

ffreadc Yes No

ffwite Yes Yes

ffwitec Yes No

ffcl ose Yes Yes

ffflush Yes No

f f weof Passed through Yes

f f weod Yes Yes

ffseek Yes seek(fd, 0, 0) Yes seek(fd, 0, 0) only

only (egquals rewind)
ffbksp No No

14.11 The nr Layer

S-3901-71

The memory-resident (nT) layer lets users declare that all or part of afile will reside
in memory. This can improve performance for relatively small files that are heavily
accessed or for larger files where the first part of the file is heavily accessed (for
example, afile which contains a frequently updated directory at the beginning.) The
nT layer triesto allocate a buffer large enough to hold the entire file.

Note: It is generally more advantageous to configure the layer preceding the nr
layer to make the file buffer-resident, assuming that layer can support buffers of
sufficient size.

The options are as follows:

nr [. type] . subtype]] : numl: num2: num3

The keyword syntax is as follows:

nr[.typel . subtype]][. start _si ze=numl] [. max_si ze=num2]
[.1nc_size=num3]

261

Cray Fortran Reference Manual

262

The type field specifies whether the file in memory is intended to be saved or is
considered a scratch file. This argument accepts the following values:

Value Definition

save Default. Thefileisloaded into memory when opened and written
back to the next lower layer when closed. The save option aso
modifies the behavior of overflow processing.

scr Scratch file. Thefileis not read into memory when opened and not
written when closed.

The subtype field specifies the action to take when the data can no longer fit in the
alowable memory space. It accepts the following values:

Value Definition

ovf | Default. Data which does not fit (overflows) the maximum specified
memory alocation is written to the next lower layer, which is
typically adisk file. Aninformative message iswrittento st derr
on the first overflow.

ovfl nonsg Identical to ovf | , except that no message isissued when the data
overflows the memory-resident buffer.

novf | If data does not fit in memory, subsequent wr i t e(1) operations fail.

The numl, num2, and num3 fields are nonnegative integer values that state the
number of 4096-byte blocks to usein the following circumstances:

Field Definition

numl The initial size of the memory allocation, specified in 4,096-byte
blocks. The default is 0.

num2 The maximum size of the memory alocation, specified in 4,096-byte
blocks. The default is either numl or 256 blocks (1 MB), whichever
islarger.

num3 Increment the size of the memory allocation, in 4,096-byte blocks.

Thisvalue is used when allocating additional memory space. The
default is 256 blocks (1 MB) or (num2-numl), whichever is smaller.

The numl and num3 fields represent best-effort values. They are intended for tuning
purposes only and usually do not cause failure if not satisfied precisely as specified.
For example, if the available memory space is 100 blocks and the specified num3
value is 200 blocks, growth is allowed up to the 100 available blocks rather than
failing to grow.

S-3901-71

FFIO Layer Reference [14]

Caution: When using the nt layer, you must ensure that the size of the

A memory-resident portions of the files are limited to reasonable values.
Unrestrained and unmanaged growth of such file portions can cause heap
fragmentation, exhaustion of all available memory, and program abort. If this
growth has consumed all available memory, the program may not abort gracefully,
making such a condition difficult to diagnose.

Large memory-resident files may reduce 1/0O performance for sites that provide
memory scheduling that favors small processes over large processes. Check with your
system administrator if 1/O performance is diminished.

Increment sizes which are too small can also contribute to heap fragmentation.

Memory alocation is done by using the mal | oc(3c) and r eal | oc(3c) library
routines. The file space in memory is always allocated contiguously.

When allocating hew chunks of memory space, the num3 argument is used in
conjunction withr eal | oc asaminimum first try for reallocation.

Table 44. Data Manipulation: nr Layer

Primary function Granularity Data model Truncate on write
Keep the fileresident in 8 hit Stream No

memory and avoid I/O if

possible.

Table 45. Supported Operations: nr Layer

Supported operations Required of next lower level?
Operation Supported Comments Used Comments
ff open Yes Yes Sometimes delayed until overflow
ffread Yes Yes Only on open
ffreadc Yes No
ffwite Yes Yes Only on close, overflow
ffwitec Yes No
ffclose Yes Yes
ffflush Yes No-op No
f f weof No No representation No No representation
f f weod Yes Yes

S-3901-71 263

Cray Fortran Reference Manual

Supported operations Required of next lower level?
Operation Supported Comments Used Comments
ffseek Yes Full support Yes Used in open and close processing
(absolute, relative,
and from end)
ffbksp No No records No

14.12 The nul | Layer

Thenul | layer isasyntactic convenience for users; it has no effect. Thislayer is
commonly used to simplify the writing of a shell script when a shell variableis used
to specify an FFIO layer specification. For example, the following lineis from a shell
script with afile using the assi gn command and with overlying blocking expected
(as specified by BLKTYP) :

assign -F $BLKTYP, cos fort.1

If BLKTYP isundefined, theillegal specification list, cos results. The existence of
thenul | layer lets the programmer set BLKTYP to nul | asadefault, and simplify
the script, asin:

assign -F null,cos fort.1

Thisisidentical to the following command:

assign -F cos fort.1

When used as the last layer abovethesyst emor syscal | layer, thenul | layer
supportsthe assi gn - B option to enable or disable direct I/O.

14.13 The syscal | Layer

Thesyscal | layer directly maps each request to an appropriate system call. The
layer does not accept any options.

Table 46. Data Manipulation: syscal | Layer

Granularity Data model Truncate on write
8 hits (1 byte) Stream No
264 S-3901-71

FFIO Layer Reference [14]

Table 47. Supported Operations: syscal | Layer

Operation Supported Comments

ff open Yes open

ffread Yes read
ffreadc Yes r ead plus code
ffwite Yes wite
ffwitec Yes wri t e plus code
ffcl ose Yes cl ose
ffflush Yes None

f f weof No None

f fweod Yes trunc(?)
ffseek Yes | seek(2)
ffbksp No

Lower-level layers are not allowed.

14.14 The syst emLayer

The syst emlayer isimplicitly appended to all specification lists, if not explicitly
added by the user (unlessthesyscal | orf d layer is specified). It maps requests to

appropriate system calls.

For a description of options, seethesyscal | layer. Lower-level layers are not

allowed.

14.15 The t ext Layer

Thet ext layer performs text blocking by terminating each record with a newline
character. It can also recognize and represent the EOF mark. Thet ext layerisused

S-3901-71

with character files and does not work with binary data. The general specification

follows:

text[.type] : [numl] : [num2]

The keyword syntax is as follows:

text[.type] [. newl i ne=numl] [. buf si ze=num2]

265

Cray Fortran Reference Manual

The type field can have either of the following values:

Value Definition
nl Newline-separated records.
eof Newline-separated records with a special string such as ~e. More

than one EOF in afileis allowed.

The numl field is the decimal value of a single character that represents the newline
character. The default value is 10 (octal 012, ASCII line feed).

The num?2 field specifies the working buffer size (in decimal bytes). If any lower-level
layers are record oriented, the num2 value also specifies the block size.

Table 48. Data Manipulation: t ext Layer

Granularity Data model Truncate on write
8 hits Record No

Table 49. Supported Operations: t ext Layer

Supported operations Required of next lower level?

Operation Supported Comments Used Comments
ffopen Yes Yes

ffread Yes Yes

ffreadc Yes No

ffwite Yes Yes

ffwitec Yes No

ffcl ose Yes Yes

ffflush Yes No

f f weof Passed through Yes Only if explicitly requested
f f weod Yes Yes

ffseek Yes Yes

ffbksp No No

14.16 The user and si t e Layers

266

Theuser andsi t e layerslet users and site administrators build user-defined or
site-specific layers to meet special needs. The syntax follows:

user [numl] : [num2]

site: [numl] : [num2]

S-3901-71

FFIO Layer Reference [14]

The open processing passes the numl and hum2 arguments to the layer and these
arguments are interpreted by the layers.

See Chapter 15, Creating auser Layer on page 271 for an example of how to create
auser FFIO layer.

14.17 The vns Layer

Thevns layer handles record blocking for three common record types on VAX/VMS
operating systems. The general format of the specification follows:

vns. [type. subtype] : [numl] : [num2]
The following is the alternate keyword syntax for this layer:

vis. [type. subtype] [. recsi ze=numl] [. mbs=num2]

The following type values are supported:

Value Definition

f VAX/VMS fixed-length records

% VAX/VMS variable-length records

s VAX/VMS variable-length segmented records

In addition to the record type, you must specify a record subtype, which has one
of the following values:

Value Definition

bb Format used for binary blocked transfers

di sk Same as binary blocked

tr Transparent format, for files transferred as a bit stream to and from
the VAX/VMS system

t ape VAX/VMS labeled tape

The numl field is the maximum record size that may be read or written. It isignored
by the s record type.

Table 50. Values for Record Size: vns Layer

Field Minimum Maximum Default Comments

v. bb 1 32,767 32,767

v.tape 1 9995 2043

v.tr 1 32,767 2044

s. bb 1 None None No maximum record size

S-3901-71

267

Cray Fortran Reference Manual

Field

Minimum M aximum Default Comments

s. tape

s. tr

1
1

None None No maximum record size

None None No maximum record size

The num?2 field is the maximum segment or block size that is allowed on input and
is produced on output. Forvns. f.tr andvns. f. bb, num2 should be equal to

the record size (numl). Becausevns. f . t ape places one or more records in each
block, vims. f . t ape num2 must be greater than or equal to num1.

Table 51. Values for Maximum Block Size: virs Layer

Field

Minimum M aximum Default Comments

. bb
. tape
Ar
. bb
. tape
ar

n uno n < < <

o N 0o W o

32,767 32,767

32,767 2,048

32,767 32,767 N/A
32,767 2,046

32,767 2,048

32,767 2,046 N/A

Forvns. v. bb andvns. v. di sk records, num2 is alimit on the maximum record
size. Forvims. V. t ape records, it is the maximum size of a block on tape; more
specificaly, it is the maximum size of arecord that will be written to the next lower
layer. If that layer ist ape, num2 isthe tape block size. If itiscos, it will be a COS
record that represents a tape block. One or more records are placed in each block.

For segmented records, num2 is alimit on the block size that will be produced. No
l[imit on record size exists. Forvns. s. tr andvns. s. bb, theblock sizeisan
upper limit on the size of a segment. For virs. s. t ape, one or more segments are
placed in atape block. It functions as an upper limit on the size of a segment and
as a preferred tape block size.

Table 52. Data Manipulation: v Layer

Granularity

Data model Truncate on write Implementation strategy

8 bits

Record No for f records. Yesforv and f recordsfor f formats. v records

S records. for v formats.

268

S-3901-71

FFIO Layer Reference [14]

Table 53. Supported Operations:

virs Layer

Supported operations

Required of next lower level?

Operation Supported Comments Used Comments

ff open Yes Yes

ffread Yes Yes

ffreadc Yes No

ffwite Yes Yes

ffwitec Yes No

ffcl ose Yes Yes

ffflush Yes No

f f weof Yes and Yes for s records; Yes Only if explicitly requested
passed passed through for
through others

f f weod Yes Yes

ffseek Yes seek(fd, 0,0) only Yes seek(fd, 0, 0) only

(equals rewind)
ff bksp No No

S-3901-71

269

Cray Fortran Reference Manual

270 S-3901-71

Creating a user Layer [15]

This chapter explains some of the internals of the FFIO system and explains the ways
in which you can put together auser or si t e layer.

15.1 Internal Functions

S-3901-71

The FFIO system has an internal model of data that maps to any given actual logical
file type based on the following concepts:

« Dataisastream of bits. Layers must declare their granularity by using the
fffcntl (3c) cal.

» Record marks are boundaries between logical records.

» End-of-file (EOF) marks are a special type of record that exists in some file
structures.

* End-of-data (EOD) is a point immediately beyond the last data bit, EOR, or EOF
in the file. You cannot read past or write after an EOD. In a case when afileis
positioned after an EOD, a write operation (if valid) immediately moves the
EOD to a point after the last data bit, end-of-record (EOR), or EOF produced
by the write.

All files are streams that contain zero or more data bits that may contain record
or file marks.

No inherent hierarchy or ordering isimposed on the file structures. Any number of
data bits or EOR and EOF marks may appear in any order. The EOD, if present, is by
definition last. Given the EOR, EOF, and EOD return statuses from read operations,
only EOR may be returned along with data. When data bits are immediately followed
by EOF, the record is terminated implicitly.

Individual layers can impose restrictions for specific file structures that are more
restrictive than the preceding rules. For instance, in COS blocked files, an EOR
aways immediately precedes an EOF.

Successful mappings were used for all logical file types supported, except formats
that have more than one type of partitioning for files (such as end-of-group or more
than one level of EOF). For example, some file formats have level numbersin the
partitions. FFIO maps level 017 to an EOF. No other handling is provided for these
level numbers.

271

Cray Fortran Reference Manual

Internally, there are two main protocol components: the operations and the stat
structure.

15.1.1 The Operations Structure

Many of the operations try to mimic the CLE system calls. In the man pages for
ffread(3c), ffwi te(3c), and others, the calls can be made without the optional
parameters and appear like the system calls. Internally, all parameters are required.

Table 54 provides a brief synopsis of the interface routines that are supported at
the user level. Each of thesef f entry points checks the parameters and issues the
corresponding internal call. Each interface routine provides defaults and dummy
arguments for those optional arguments the user does not provide.

Each layer must have an internal entry point for al of these operations, although in
some cases the entry point may simply issue an error or do nothing. For example, the
syscal | layeruses ff _noop for thef f f 1l ush entry point because it has no
buffer to flush, andituses _ff _err 2 for thef f weof entry point because it has no
representation for EOF. No optional parameters for calls to the internal entry points
exist. All arguments are required.

Table 54. C Program Entry Points

Variable Definition

fd The FFIO pointer (struct fdinfo *)fd.

file A char * file.

flags File status flag for open, such asO_RDONLY.

buf Bit pointer to the user data.

nb Number of bytes.

ret The status returned; >=0 isvalid, <O iserror.

stat A pointer to the status structure.

fulp Thevalue FULL or PARTI AL defined inf fi o. h for full

or partial-record mode.

&ubc A pointer to the unused bit count; this ranges from O to
7 and represents the bits not used in the last byte of the
operation. It isused for both input and output.

pos A byte position in the file.

0pos The old position of thefile, just likethesyst emcall.
whence The same asthesyscal | .

cmd The command request to thef f f cnt | (3c) call.

arg A generic pointer tothef f f cnt | argument.

272 S-3901-71

Creating a user Layer [15]

Variable

Definition

mode

argp
len

Bit pattern dencting file's access permissions.
A pointer to the input or output data.

The length of the space available at argp. It is used
primarily on output to avoid overwriting the available
memory.

15.1.2 FFIO and the st at Structure

The st at structure contains four fields in the current implementation. They mimic
thei ows structure of the CLE ASYNC syscal | s to the extent possible. All
operations are expected to update the stat structure on each call. The SETSTAT and
ERETURN macros are provided inthef f i 0. h file for this purpose.

The fields in the stat structure are as follows:

Status field
stat.sw flag
stat.sw_ error

st at.sw_count

st at.sw st at

Description
0 indicates outstanding; 1 indicates I/O complete.
0 indicates no error; otherwise, the error number.

Number of bytes transferred in this request. This
number is rounded up to the next integral value if
apartial byte is transferred.

Thisindicates the status of the 1/O operation. The
FFSTAT(st at) macro accessesthisfield. The
following values are valid:

FFBQD: At beginning-of-data (BOD).

FFCNT: Request terminated by count (either the
count of bytes before EOF or EOD in the file or
the count of the request).

FFEOR: Request termination by EOR, or afull
record mode read was processed.

FFEOF: EOF encountered.
FFEQD: EOD encountered.

FFERR: Error encountered.

If count issatisfied simultaneously with EOR, the FFEORis returned.

S-3901-71

273

Cray Fortran Reference Manual

The EOF and EOD status values must never be returned with data. This means that if
a byte-stream file is being traversed and the file contains 100 bytes followed by an
EOD, aread of 500 bytesreturnsast at value of FFCNT and areturn byte count of
100. The next read operation returns FFEOD and acount of O.

A FFECF or FFEQD status is aways returned with a 0-byte transfer count.

15.2 user Layer Example

This section gives a complete and working user layer. It traces |/O at agiven level.
All operations are passed through to the next lower-level layer, and at r ace record is
sent to thet r ace file.

The first step in generating a user layer isto create atable that contains the addresses
for the routines that will fulfill the required functions described in The Operations
Structure on page 272 and FFIO and the st at Structure on page 273. The format
of thetablecan befoundinstruct xtr_s,whichisfoundinthe<ffi o. h>
file. No restriction is placed on the names of the routines, but the table must be
called _usr_ffvect foritto berecognized asauser layer. In the example, the
declaration of the table can be found with the codein the _usr _open routine.

To use this layer, you must take advantage of the weak external filesin the library.
The following script fragment is suggested for CLE systems:

-D_LIB_INTERNAL is required to obtain the
declaration of struct fdinfo in <ffio.h>

#

cc -c -D LIB_ INTERNAL -hcal chars usr*.c

cat usr*.o > user.o
#

Note that the -F option is selected that |oads
and links the entries despite not having any

hard references.

CC -0 user.o nyprog.o
assign -F user,others... fort.1

. [abs

274

S-3901-71

Creating a USer Layer

[15]

static char USM D] = "@#) code/ usrbksp. ¢
/* COPYRI GHT CRAY | NC.
* UNPUBLI SHED -- ALL RI GHTS RESERVED UNDER
* THE COPYRI GHT LAWS OF THE UNI TED STATES.
*/
#i ncl ude <ffio.h>
#i ncl ude "usrio. h"
/*
* trace backspace requests
*/
int
_usr_bksp(struct fdinfo *fio, struct ffsw *stat)
{
struct fdinfo *I1fio;
int ret;
I1fio = fio->fioptr;
_usr_enter(fio, TRC_BKSP);
_usr_pr_2p(fio, stat);
ret = XRCALL(IIfio, backrtn) Ilfio, stat);
_usr_exit(fio, ret, stat);
return(0);
}

S-3901-71

1.0

275

Cray Fortran Reference Manual

static char USM D] = "@#)code. usrcl ose.c
/* COPYRI GHT CRAY | NC.
* UNPUBLI SHED -- ALL RI GHTS RESERVED UNDER
* THE COPYRI GHT LAWS OF THE UNI TED STATES.
*/
#i ncl ude <stdio. h>
#i nclude <mall oc. h>
#i ncl ude <ffio.h>
#i ncl ude "usrio.h"
/*
* trace cl ose requests
*/
i nt

_usr_close(struct fdinfo *fio, struct ffsw *stat)

{

struct fdinfo *IIfio;
struct trace_f *pinfo;
int ret;
I1fio = fio->fioptr;

* lyr_infois a place in the fdinfo bl ock that

* a pointer to the layer's private infornation.

*/
pinfo = (struct trace_f *)fio->lyr_info;
_usr_enter(fio, TRC_CLOSE);
_usr_pr_2p(fio, stat);
/*
* close file
*/
ret = XRCALL(IIfio, closertn) IIlfio,
/*
* |t is the layer's responsibility to clean up its ness.
*/
free(pi nfo->nane);
pi nfo->nanme = NULL;
free(pinfo);
_usr_exit(fio, ret, stat);
(void) close(pinfo->usrfd);
return(0);
}
276

stat);

hol ds

S-3901-71

Creating a USer Layer

[15]

static char USM D] = "@#)code/usrfcntl.c 1.0 "

/*
*

*

*

/

COPYRI GHT CRAY | NC.
UNPUBLI SHED -- ALL RI GHTS RESERVED UNDER
THE COPYRI GHT LAWS CF THE UNI TED STATES.

#i ncl ude <ffio.h>
#i ncl ude "usrio. h"

/*

*

E I I S . R N N N SN N S S . N . I S S

/

i nt
_usr_fentl(struct fdinfo *fio, int cnd, void *arg, struct ffsw *stat)

trace fcntl requests

Par anet er s:

fd - fdinfo pointer

cmd - command code

arg - command specific paraneter

st at - pointer to status return word

This fcntl routine passes the request down to the next |ower
layer, so it provides nothing of its own.

When writing a user layer, the fcntl routine must be provided,
and must provide correct responses to one essential function and
two desirable functions.

FC _GETI NFO (essential)

If the 'cnd" argunent is FC GETINFO, the fields of the "arg' is
considered a pointer to an ffc_info_s structure, and the fields
must be filled. The nost inportant of these is the ffc_flags
field, whose bits are defined in <ffio.h> (Look for FFC_STRM

t hr ough FFC_NOTRN)

FC_STAT: (desirable)

FC RECALL: (desirable)

{

struct fdinfo *IIfio;
struct trace_f *pinfo;
int ret;

I1fio = fio->fioptr;

pinfo = (struct trace_f *)fio->lyr_info;
_usr_enter(fio, TRC_FCNTL);

_usr_info(fio, "cmd=% ", cnd);

ret = XRCALL(IIfio, fentlrtn) [I1fio, cnd, arg, stat);
_usr_exit(fio, ret, stat);

return(ret);

}

static char USM D] = "@#) code/ usropen. c 1.0 "

/*
*

*

*

/

COPYRI GHT CRAY | NC.
UNPUBLI SHED -- ALL RI GHTS RESERVED UNDER
THE COPYRI GHT LAWS OF THE UNI TED STATES.

#i ncl ude <stdio. h>
#i nclude <fcntl. h>
#i ncl ude <mal |l oc. h>
#i ncl ude <ffio.h>

S-3901-71

277

Cray Fortran Reference Manual

#i ncl ude "usrio. h"
#defi ne SUFFI X ".trc"

/*

* trace open requests;

* The foll owi ng routines conpose the user layer. They are decl ared
* in "usrio.h"

*/

/*
* Create the _usr_ffvect structure. Note the ff err inclusion to
* account for the listiortn, which is not supported by this user

* | ayer
*/
struct xtr_s _usr_ffvect =
{
_usr _open, _usr_read, _usr_reada, _usr_readc,
_usr_write, _usr_witea, _usr_witec, _usr_close,
_usr_flush, _usr_weof, _usr_weod, _usr_seek,
_usr _bksp, _usr_pos, _usr_err, _usr_fentl
i
_ffopen_t
_usr _open(
const char *nane,
int flags,
node_t node,
struct fdinfo * fio,
uni on spec_u *spec,
struct ffsw *stat,
| ong chits,
int cbl ks,
struct gl _o_inf *oinf)
{
uni on spec_u *nspec;
struct fdinfo *IIfio;
struct trace_f *pinfo;
char *ptr = NULL;
int nanlen, usrfd;
_ffopen_t nextfio;
char buf[256];
nam en = strl en(nane);
ptr = malloc(nam en + strlen(SUFFI X) + 1);
if (ptr == NULL) goto badopen;
pinfo = (struct trace_f *)nalloc(sizeof (struct trace_f));
if (pinfo == NULL) goto badopen;
fio->lyr_info = (char *)pinfo;
/*
* Now, build the nane of the trace info file, and open it.
*/
strcpy(ptr, nane);
strcat(ptr, SUFFIX);
usrfd = open(ptr, OWRONLY | O APPEND | O CREAT, 0666);
/*
* Put the file info into the private data area.
*/

278 S-3901-71

Creating a user Layer [15]

pi nf o- >nane = ptr;
pi nf o->usrfd = usrfd;
ptr[namen] = '\0";

/*
* Log the open call
*/
_usr_enter(fio, TRC_OPEN);
sprintf(buf,"(\"%\", %, %0...);\n", nanme, flags, node);
_usr_info(fio, buf, 0);
/*
* Now, open the |ower |ayers
*/
nspec = spec;
NEXT_SPEC(nspec) ;
nextfio = _ffopen(name, flags, node, nspec, stat, cbhits, cblks,
NULL, oinf);
_usr_exit_ff(fio, nextfio, stat);
if (nextfio != _FFOPEN_ERR)
{
DUVMP_I OB(fio); /* debugging only */
return(nextfio);
}
/*

* End up here only on an error
*/

badopen:
if(ptr !'= NULL) free(ptr);
if (fio->lyr_info != NULL) free(fio->lyr_info);
_SETERROR(stat, FDC_ERR_NOVEM 0);
return(_FFOPEN_ERR);

}

_usr_err(struct fdinfo *fio)

{
_usr_info(fio,"ERROR not expecting this routine\n",0);
return(0);

}

S-3901-71 279

Cray Fortran Reference Manual

static char USM D] = "@#) code/ usrpos.c 1.1 "

/* COPYRI GHT CRAY I NC.
* UNPUBLI SHED -- ALL RI GHTS RESERVED UNDER
* THE COPYRI GHT LAWS OF THE UNI TED STATES.
*/

#i ncl ude <ffio.h>
#i ncl ude "usrio.h"

/*

* trace positioning requests

*/

_ffseek_t

_usr_pos(struct fdinfo *fio, int cnmd, void *arg, int len, struct ffsw *stat)
{

struct fdinfo *I1fio;
struct trace_f *usr_info;
_ffseek t ret;

I1fio = fio->fioptr;
usr_info = (struct trace_f *)fio->lyr_info;

_usr_enter(fio, TRC_POS);

_usr_info(fio, " ", 0);

ret = XRCALL(IIfio, posrtn) Ilfio, cnd, arg, len, stat);
_usr_exit_sk(fio, ret, stat);

return(ret);

}
static char USM D] = "@#)code/usrprint.c 1.1 "

/* COPYRI GHT CRAY | NC.
* UNPUBLI SHED -- ALL RI GHTS RESERVED UNDER
* THE COPYRI GHT LAWS OF THE UNI TED STATES.
*/

#i ncl ude <stdio. h>

#i ncl ude <ffio.h>

#i ncl ude "usrio. h"

static char *name_tab[] =
{

27",
"ffopen",
"ffread",
"ffreadc",
"ffwite",
"ffwitec"
"ffclose",
"ffflush",
"ffweof",
"ffweod",
"ffseek",
"f f bksp",
"fflistio",
"fffentl ",
b

280 S-3901-71

Creating a user

Layer

[15]

/*

* trace printing stuff

*/
int

_usr_enter(struct fdinfo *fio, int opcd)

voi d

{
char buf[256], *op;
struct trace f *usr_info;

op = nanme_t ab[opcd];

usr_info = (struct trace_f *)fio->lyr_info;
sprintf(buf, "TRCE % ",op);
write(usr_info->usrfd, buf, strlen(buf));
return(0);

}

_usr_info(struct fdinfo *fio, char *str, int argl)

voi d

{
char buf[256];

struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;
sprintf(buf, str, argl);
write(usr_info->usrfd, buf, strlen(buf));

}

_usr_exit(struct fdinfo *fio, int ret, struct ffsw *stat)

voi d

{
char buf[256];
struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;

fio->ateof = fio->fioptr->ateof;

fio->ateod = fio->fioptr->ateod;

sprintf(buf, "TRCX ret =%, stat=%l, err=%l\n",
ret, stat->sw stat, stat->sw.error);

write(usr_info->usrfd, buf, strlen(buf));

}

_usr_exit_ss(struct fdinfo *fio, ssize_t ret, struct ffsw *stat)

voi d

{
char buf[256];
struct trace_f *usr_info;

usr_info =

fi o->at eof fio->fioptr->ateof;

fio->ateod fio->fioptr->ateod;

sprintf(buf, "TRCX ret=9%4d, stat=%, err=%\n",
ret, stat->sw stat, stat->sw error);

write(usr_info->usrfd, buf, strlen(buf));

}

(struct trace_f *)fio->lyr_info;

_usr_exit_ff(struct fdinfo *fio, _ffopen_t ret, struct ffsw *stat)

S-3901-71

281

Cray Fortran Reference Manual

{
char buf[256];

struct trace f *usr _info;

usr_info = (struct trace_f *)fio->lyr_info;
sprintf(buf, "TRCX ret =%, stat=%l, err=%l\n",
ret, stat->sw_ stat, stat->sw.error);
write(usr_info->usrfd, buf, strlen(buf));
}
voi d
_usr_exit_sk(struct fdinfo *fio, _ffseek_ t ret, struct ffsw *stat)

{
char buf[256];
struct trace f *usr _info;
usr_info = (struct trace_f *)fio->lyr_info;
fio->ateof = fio->fioptr->ateof;
fio->ateod = fio->fioptr->ateod,;
sprintf(buf, "TRCX ret=%%d, stat=%l, err=%\n",
ret, stat->sw stat, stat->sw.error);
#endi f
write(usr_info->usrfd, buf, strlen(buf));
}
voi d
_usr_pr_rwe(
struct fdinfo *fio,
bitptr bufptr,
size_t nbytes,
struct ffsw *stat,
int fulp)
{
char buf[256];
struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;
sprintf(buf,"(fd/ %x */, &enc[%x], %d, &tatwf%x], ",
fio, BPTR2CP(bufptr), nbytes, stat);
write(usr_info->usrfd, buf, strlen(buf));
if (fulp == FULL)
sprintf(buf,"FULL");
el se
sprintf(buf,"PARTI AL");
write(usr_info->usrfd, buf, strlen(buf));

}
voi d
_usr_pr_rwy
struct fdinfo *fio,
bitptr bufptr,
size_t nbytes,
struct ffsw *stat,
int fulp,
i nt *ubc)
{
char buf[256];
struct trace_f *usr_info;

usr_info = (struct trace_f *)fio->lyr_info;

sprintf(buf,"(fd/ %x */, &renc[%Wx], %d, &statw %x], ",
fio, BPTR2CP(bufptr), nbytes, stat);

282 S-3901-71

Creating a user Layer [15]

wite(usr_info->usrfd, buf, strlen(buf));
if (fulp == FULL)

sprintf(buf,"FULL");
el se
sprintf(buf,"PARTI AL");
write(usr_info->usrfd, buf, strlen(buf));

sprintf(buf,", &conubc[%l]; ", *ubc);
write(usr_info->usrfd, buf, strlen(buf));
}

voi d
_usr_pr_2p(struct fdinfo *fio, struct ffsw *stat)

{
char buf[256];
struct trace f *usr _info;

usr_info = (struct trace_f *)fio->lyr_info;

sprintf(buf,"(fd / %x */, &statw % Xx],
fio, stat);

write(usr_info->usrfd, buf, strlen(buf));

}

S-3901-71 283

Cray Fortran Reference Manual

static char USM D] = "@#)code/ usrread. ¢ 1.0 "
/* COPYRI GHT CRAY | NC.

* UNPUBLI SHED -- ALL RI GHTS RESERVED UNDER

* THE COPYRI GHT LAWS OF THE UNI TED STATES.

*/

#i nclude <ffio. h>
#i ncl ude "usrio.h"

/*

* trace read requests

*

* Paraneters:

* fio - Pointer to fdinfo bl ock

* bufptr - bit pointer to where data is to go.
* nbytes - Nunber of bytes to be read

* stat - pointer to status return word
* fulp - full or partial read node fl ag
* ubc - pointer to unused bit count

*/

ssize_t

_usr_read(

struct fdinfo *fio,
bitptr bufptr,
size_t nbytes,
struct ffsw *stat,
int fulp,
int *ubc)
{
struct fdinfo *IIfio;
char *str;
ssize_t ret;
Il1fio = fio->fioptr;
_usr_enter(fio, TRC READ);
_usr_pr_rw(fio, bufptr, nbytes, stat, fulp, ubc);
ret = XRCALL(IIfio, readrtn) IIfio, bufptr, nbytes, stat,
ful p, ubc);
_usr_exit_ss(fio, ret, stat);
return(ret);

}

284 S-3901-71

Creating a user Layer [15]

/*

* trace reada (asynchronous read) requests
*

* Paraneters:

* fio - Pointer to fdinfo bl ock

* bufptr - bit pointer to where data is to go.
* nbytes - Nunber of bytes to be read

* stat - pointer to status return word
* fulp - full or partial read node fl ag
* ubc - pointer to unused bit count

*/

ssize_t

usr _reada(

struct fdinfo *fio,
bitptr bufptr,
size_t nbytes,
struct ffsw *stat,
int fulp,
i nt *ubc)
{
struct fdinfo *I1fio;
char *str;
ssize_t ret;

I1fio = fio->fioptr;

_usr_enter(fio, TRC_READA);

_usr_pr_rw(fio, bufptr, nbytes, stat, fulp, ubc);

ret = XRCALL(IIfio,readartn)l|fio, bufptr, nbytes, stat, ful p, ubc);
_usr_exit_ss(fio, ret, stat);

return(ret);

}

S-3901-71 285

Cray Fortran Reference Manual

/*

* trace readc requests

*

* Par anet ers:

* fio - Pointer to fdinfo bl ock

* bufptr - bit pointer to where data is to go.
* nbytes - Nunmber of bytes to be read

* stat - pointer to status return word
* fulp - full or partial read nmode flag
*/

ssize_t

_usr_readc(
struct fdinfo *fio,
bitptr bufptr,
size_t nbytes,
struct ffsw *stat,
int fulp)
{
struct fdinfo *IIfio;
char *str;
ssize_t ret;
I1fio = fio->fioptr;
_usr_enter(fio, TRC_READC);
_usr_pr_rwe(fio, bufptr, nbytes, stat, fulp);
ret = XRCALL(IIfio, readcrtn)lIfio, bufptr, nbytes, stat,
ful p);
_usr_exit_ss(fio, ret, stat);
return(ret);

}

/*
* _usr_seek()
*
* The user seek call should mimc the | seek systemcall as
* much as possible.
*/
_ffseek_t
_usr_seek(
struct fdinfo *fio,
of f _t pos,
i nt whence,
struct ffsw *stat)
{
struct fdinfo *I1fio;
_ffseek_t ret;
char buf[256];

I1fio = fio->fioptr;

_usr_enter(fio, TRC_SEEK);

sprintf(buf,"pos % d, whence %\ n", pos, whence);
_usr_info(fio, buf, 0);

ret = XRCALL(IIfio, seekrtn) IIfio, pos, whence, stat);
_usr_exit_sk(fio, ret, stat);

return(ret);

}

286 S-3901-71

Creating a user Layer [15]

static char USM D] = "@#)code/usrwite.c 1.0 "

/* COPYRI GHT CRAY I NC.

* UNPUBLI SHED -- ALL RI GHTS RESERVED UNDER
* THE COPYRI GHT LAWS OF THE UNI TED STATES.
*/

#i ncl ude <ffio.h>
#i ncl ude "usrio.h"

/*

* trace wite requests

*

* Parameters:

* fio - Pointer to fdinfo bl ock

* bufptr - bit pointer to where data is to go.
* nbytes - Number of bytes to be witten

* stat - pointer to status return word

* fulp - full or partial wite node flag

* ubc - pointer to unused bit count (not used for |BM
*/

ssize_t

_usr_write(

struct fdinfo *fio,

bitptr bufptr,

size_t nbytes,

struct ffsw *stat,

int fulp,

i nt *ubc)
{
struct fdinfo *IIfio;
ssize_t ret;

I1fio = fio->fioptr;

_usr_enter(fio, TRC_WRITE);

_usr_pr_rw(fio, bufptr, nbytes, stat, fulp, ubc);

ret = XRCALL(IIfio, witertn) IIfio, bufptr, nbytes, stat,
ful p, ubc);

_usr_exit_ss(fio, ret, stat);

return(ret);

}

S-3901-71 287

Cray Fortran Reference Manual

/*

* trace witea requests

*

* Par anet ers:

* fio - Pointer to fdinfo bl ock

* bufptr - bit pointer to where data is to go.
* nbytes - Nunber of bytes to be witten

* stat - pointer to status return word

* fulp - full or partial wite node flag

* ubc - pointer to unused bit count (not used for IBM
*/

ssize_t

_usr_writea(
struct fdinfo *fio,
bitptr bufptr,
size_t nbytes,
struct ffsw *stat,
int fulp,
i nt *ubc)
{
struct fdinfo *I1fio;
ssize_t ret;

I1fio = fio->fioptr;

_usr_enter(fio, TRC_WRI TEA);

_usr_pr_rww(fio, bufptr, nbytes, stat, fulp, ubc);

ret = XRCALL(IIfio, witeartn) Ilfio, bufptr, nbytes, stat,
ful p, ubc);

_usr_exit_ss(fio, ret, stat);

return(ret);

}

288 S-3901-71

Creating a user Layer [15]

/*

* trace witec requests

*

* Par anet ers:

* fio - Pointer to fdinfo bl ock

* bufptr - bit pointer to where data is to go.
* nbytes - Nunber of bytes to be witten
* stat - pointer to status return word
* fulp - full or partial wite node flag
*/

ssi ze t

_usr_writec(

struct fdinfo *fio,

bitptr bufptr,

size_t nbytes,

struct ffsw *stat,

int fulp)
{
struct fdinfo *I1fio;
ssize t ret;

I1fio = fio->fioptr;
_usr_enter(fio, TRCWRITECQ);
_usr_pr_rwe(fio, bufptr, nbytes, stat, fulp);
ret = XRCALL(IIfio, witecrtn)llfio,bufptr, nbytes, stat,
fulp);
_usr_exit_ss(fio, ret, stat);
return(ret);
}
/*
* Flush the buffer and cl ean up
* This routine should return O, or -1 on error.

*/

i nt

_usr_flush(struct fdinfo *fio, struct ffsw *stat)
{
struct fdinfo *I1fio;
int ret;

I1fio = fio->fioptr;

_usr_enter(fio, TRC FLUSH);

_usr_info(fio, "\n",0);

ret = XRCALL(IIfio, flushrtn) IIfio, stat);
_usr_exit(fio, ret, stat);

return(ret);

}

S-3901-71 289

Cray Fortran Reference Manual

/*
* trace WEOF calls
*
* The EOF is a very specific concept. Don't confuse it with the
* ECF, or the truncate(2) systemcall.
*/
i nt
_usr_weof (struct fdinfo *fio, struct ffsw *stat)
{
struct fdinfo *IIfio;
int ret;
I1fio = fio->fioptr;
_usr_enter(fio, TRC VECF);
_usr_info(fio, "\n",0);
ret = XRCALL(IIfio, weofrtn) IIfio, stat);
_usr_exit(fio, ret, stat);
return(ret);
}
/*
* trace WEOD calls
*
* The EOD is a specific concept. Don't confuse it with the
* EOF. It is usually mapped to the truncate(2) systemcall.
*/
i nt
_usr_weod(struct fdinfo *fio, struct ffsw *stat)
{
struct fdinfo *IIfio;
int ret;
I1fio = fio->fioptr;
_usr_enter(fio, TRC VEEOD);
_usr_info(fio, "\n",0);
ret = XRCALL(IIfio, weodrtn) IIfio, stat);
_usr_exit(fio, ret, stat);
return(ret);
}
/* USM D @ #)code/usrio.h 1.1 */

/* COPYRI GHT CRAY I NC.
* UNPUBLI SHED -- ALL RI GHTS RESERVED UNDER
* THE COPYRI GHT LAWS OF THE UNI TED STATES.
*/

#define TRC OPEN 1
#defi ne TRC READ 2
#defi ne TRC_READA 3
#def i ne TRC READC 4
#define TRC WRITE 5
#define TRC_ WRI TEA 6
#defi ne TRC WRI TEC 7
#define TRC CLOSE 8
#define TRC FLUSH 9
#defi ne TRC_ WEOF 10
#defi ne TRC_ WECD 11

290

S-3901-71

Creating a user Layer [15]

#defi ne TRC_SEEK 12
#define TRC BKSP 13
#define TRC PCS 14
#defi ne TRC_UNUSED 15
#define TRC_FCNTL 16

struct trace_f

{
char *nane; /* nanme of the file */
int usrfd; /* file descriptor of trace file */
i
/*
* Prototypes
*/

extern int _usr_bksp(struct fdinfo *fio, struct ffsw *stat);

extern int _usr_close(struct fdinfo *fio, struct ffsw *stat);

extern int _usr_fcntl(struct fdinfo *fio, int cnd, void *arg,
struct ffsw *stat);

extern _ffopen_t _usr_open(const char *nane, int flags,
node_t node, struct fdinfo * fio, union spec_u *spec,
struct ffsw *stat, long cbhits, int cblks,
struct gl _o_inf *oinf);

extern int _usr_flush(struct fdinfo *fio, struct ffsw *stat);

extern ffseek_t _usr_pos(struct fdinfo *fio, int cnd, void *arg,
int len, struct ffsw *stat);

extern ssize_t _usr_read(struct fdinfo *fio, bitptr bufptr,
size_t nbytes, struct ffsw *stat, int fulp, int *ubc);

extern ssize_ t _usr_reada(struct fdinfo *fio, bitptr bufptr,
size_t nbytes, struct ffsw *stat, int fulp, int *ubc);

extern ssize_t _usr_readc(struct fdinfo *fio, bitptr bufptr,
size_t nbytes, struct ffsw *stat, int fulp);

extern _ffseek_ t _usr_seek(struct fdinfo *fio, off_t pos, int whence,
struct ffsw *stat);

extern ssize t _usr_wite(struct fdinfo *fio, bitptr bufptr,
size_t nbytes, struct ffsw *stat, int fulp, int *ubc);

extern ssize_ t _usr_witea(struct fdinfo *fio, bitptr bufptr,
size_t nbytes, struct ffsw *stat, int fulp, int *ubc);

extern ssize_ t _usr_witec(struct fdinfo *fio, bitptr bufptr,
size_t nbytes, struct ffsw *stat, int fulp);

extern int _usr_weod(struct fdinfo *fio, struct ffsw *stat);

extern int _usr_weof(struct fdinfo *fio, struct ffsw *stat);

extern int _usr_err();

/*
* Prototypes for routines that are used by the user |ayer.
*/
extern int _usr_enter(struct fdinfo *fio, int opcd);
extern void _usr_info(struct fdinfo *fio, char *str, int argl);
extern void _usr_exit(struct fdinfo *fio, int ret, struct ffsw *stat);
extern void _usr_exit_ss(struct fdinfo *fio, ssize_t ret,
struct ffsw *stat);
extern void _usr_exit_ff(struct fdinfo *fio, _ffopen_t ret,
struct ffsw *stat);
extern void _usr_exit_sk(struct fdinfo *fio, _ffseek_t ret,
struct ffsw *stat);
extern void _usr_pr_rw(struct fdinfo *fio, bitptr bufptr,
size_t nbytes, struct ffsw *stat, int fulp, int *ubc);
extern void _usr_pr_2p(struct fdinfo *fio, struct ffsw *stat);

S-3901-71 201

Cray Fortran Reference Manual

292 S-3901-71

Named Pipe Support [16]

S-3901-71

Named pipes, or UNIX FIFO specid files for 1/0O requests, are created with the
nknod(2) system call; these special files allow any two processes to exchange
information. The system call creates an inode for the named pipe and establishes it
as anamed pipe that can be read to or written from. It can then be used by standard
Fortran I/O or C I/O. Piped 1/O is faster than normal 1/0 and requires less memory
than memory-resident files.

Fortran programs can communicate with each other using named pipes. After a
named pipeis created, Fortran programs can access that pipe almost asif it were a
normal file. The unique aspects of process communication using named pipes are
discussed in the following list; the examples show how a Fortran program can use
standard Fortran 1/O on pipes:

» A named pipe must be created before a Fortran program opensit. The following
syntax for the command creates a named pipe called f ort . 13. The p argument
makes it a pipe.

/bin/nknod fort.13 p

A named pipe can be created from within a Fortran program by using the
pxf syst emfunction. The following example creates a named pipe:

I NTEGER | LEN, | ERROR
I LEN=0
CALL PXFSYSTEM ('/bin/ mknod fort.13 p',|LEN, | ERROR)

» Fortran programs can use two named pipes. one to read and one to write. A
Fortran program can read from or write to any named pipe, but it cannot do both
at the sametime. Thisis aFortran restriction on pipes, not a system restriction. It
occurs because Fortran does not alow read and write access at the same time.

» 1/O transfers through named pipes use memory for buffering. A separate buffer is
created for each named pipe. The Pl PE_BUF parameter defines the kernel buffer
sizeinthe/ sys/ par am h parameter file. The default value of PI PE_BUF is 8
blocks (8 * 512 words), but the full size may not be needed or used.

1/0 to named pipes does not transfer to or from a disk. However, if 1/O transfers
fill the buffer, the writing process waits for the receiving process to read the data
before refilling the buffer. If the size of the PI PE_BUF parameter is increased,
buffer contention may cause a decrease in I/O performance. If memory has
already been allocated for buffers, more space will not be allocated.

293

Cray Fortran Reference Manual

Binary data transferred between two processes through a named pipe must use
the correct file structure. The sending process should specify an undefined file
structure (assi gn -s u) for apipe. The receiving process should specify an
unblocked structure (assi gn -s unbl ocked) for apipe.

You can also select afile specification of syst em(assi gn - F systen)
for the sending process.

The file structure of the receiving or read process can be set to either an undefined
or an unblocked file structure. However, if the sending process writes a request
that islarger than Pl PE_BUF, it is essential for the receiving process to read the
data from a pipe set to an unblocked file structure. A read of atransfer larger
than PI PE_BUF on an undefined file structure yields only the amount of data
specified by Pl PE_BUF. The receiving process does not wait to see whether the
sending process is refilling the buffer. The pipe may be less than the value of

Pl PE_BUF.

For example, the following assi gn commands specify that the file structure
of the named pipe (unit 13, file name pi pe) for the sending process should
beundefi ned (-s u). Thenamed pipe (unit 15, file name pi pe) istype
unbl ocked (-s unbl ocked) for the read process.

assign -s u -a pipe u:l3
assign -s unbl ocked -a pipe u: 15

A read from a pipe that is closed by the sender causes an end-of-file (EOF).

To detect EOF on a named pipe, the pipe must be opened as read-only by the
receiving process. The remainder of this chapter presents more information about
detecting EOF.

16.1 Piped I/O Example without End-of-file Detection

In this example, two Fortran programs communicate without end-of-file (EOF)
detection. Programwr i t er d generates an array, which contains the elements 1 to
3, and writes the array to named pipe pi pel. Programr eadwt readsthe three
elements from named pipe pi pel, prints out the values, adds 1 to each value, and
writes the new elements to named pipe pi pe2. Programwr i t er d reads the new
values from named pipe pi pe2 and prints them. The - a option of theassi gn
command allows the two processes to access the same file with different assi gn
characteristics.

294

S-3901-71

Named Pipe Support [16]

S-3901-71

Example 7. No EOF Detection: program wri terd

programwriterd
par amet er (n=3)
di nensi on ia(n)
do 10 i=1,n
ia(i)=i
10 conti nue

wite (10) ia
read (11) ia
do 20 i=1,n

print*,"ia(',i,") is ',ia(i)," inwiterd

20 conti nue
end

Example 8. No EOF Detection: program r eadwt

program r eadwt
par anmet er (n=3)
di nensi on ia(n)
read (15) ia
do 10 i=1,n

print*, "ia(',i,") is ',ia(i)," in readw’

ia(i)=ia(i)+1
10 conti nue
wite (16) ia
end

The following command sequence executes the programs:

ftn -o readwt readw.f

ftn -o witerd witerd.f

/ bi n/ nknod pi pel p

/ bi n/ nrknod pi pe2 p

assign -s u -a pipel u:10

assign -s unbl ocked -a pipe2 u:1l
assign -s unbl ocked -a pipel u:15
assign -s u -a pipe2 u:16

readwt &

witerd

The output of the two programsis:

ia(l) is 1in readw
ia(2) is 2 in readw
ia(3) is 3 in readw
ia(l) is 2in witerd
ia(2) is 3in witerd
ia(3) is 4 inwiterd

295

Cray Fortran Reference Manual

16.2 Detecting End-of-file on a Named Pipe

The following conditions must be met to detect end-of-file on aread from a named
pipe within a Fortran program:

e The program that sends data must open the pipe in a specific way, and the
program that receives the data must open the pipe as read-only.

* The program that sends or writes the data must open the named pipe as
read-and-write or write-only. Read-and-write is the default because the
/ bi n/ rknod command creates a named pipe with read-and-write permission.

e The program that receives or reads the data must open the pipe as read-only. A
read from a named pipe that is opened as read-and-write waits indefinitely for
the data being sent.

16.3 Piped I/O Example with End-of-file Detection

This example uses named pipes for communication between two Fortran programs
with end-of-file detection. The programs in this example are similar to the programs
used in the preceding section. This example shows that program r eadwt can detect
the EOF.

Programwr i t er d generates array i a and writes the data to the named pipe pi pel.
Program r eadwt reads the data from the named pipe pi pel, prints the values,
adds one to each value, and writes the new elements to named pipe pi pe2. Program
wr i t er d reads the new values from pi pe2 and prints them. Finally, program
writerd closespi pel and causes programr eadwt to detect the EOF.

This command sequence executes these programs:

ftn -o readwt readw.f

ftn -o witerd witerd.f

assign -s u -a pipel u:10

assign -s unbl ocked -a pipe2 u:1ll
assign -s unbl ocked -a pipel u:15
assign -s u -a pipe2 u:1l6

/ bi n/ mknod pi pel p

/ bi n/ nrknod pi pe2 p

readwt &

witerd

296 S-3901-71

Named Pipe Support [16]

S-3901-71

Example 9. EOF Detection: program wri terd

programwiterd
par amet er (n=3)
di nensi on ia(n)
do 10 i=1,n
ia(i)=i

10 conti nue
wite (10) ia
read (11) ia
do 20 i=1,n

print*,"ia(',i,") is',ia(i)," inwiterd

20 conti nue
cl ose (10)
end

Example 10. EOF Detection: program r eadwt

program r eadwt
par anmet er (n=3)
di nensi on ia(n)
C open the pipe as read-only

open(15,form=" unformatted', action="read')

read (15,end = 101) ia

do 10 i=1,n
print*, "ia(',i,") is ',ia(i),' in readw’
ia(i)=ia(i)+1

10 conti nue

wite (16) ia

read (15,end = 101) ia

goto 102
101 print *,'End of file detected
102 conti nue

end

Thisis the output of the two programs:

ia(l) is 1 in readw
ia(2) is 2 in readw
ia(3) is 3 in readw
ia(l) is 2inwiterd
ia(2) is 3in witerd
ia(3) is 4 inwiterd
End of file detected

297

Cray Fortran Reference Manual

298 S-3901-71

Glossary

S-3901-71

blade

1) A field-replaceable physical entity. A Cray XT service blade consists of AMD
Opteron sockets, memory, Cray SeaStar chips, PCI-X or PCle cards, and a blade
control processor. A Cray XT compute blade consists of AMD Opteron sockets,
memory, Cray SeaStar chips, and a blade control processor. A Cray X2 compute
blade consists of eight Cray X2 chips (CPU and network access links), two voltage
regulator modules (VRM) per CPU, 32 memory daughter cards, a blade controller for
supervision, and a back panel connector. 2) From a system management perspective,
alogical grouping of nodes and blade control processor that monitors the nodes on
that blade.

class

A group of service nodes of a particular type, such aslogin or I/O. See also
specialization.

compute node

A node that runs application programs. A compute node performs only computation;
system services cannot run on compute nodes. Compute nodes run a specified kernel
to support either scalar or vector applications. See aso node; service node.

Cray Linux Environment (CLE)
The operating system for Cray XT systems.

CrayDoc

Cray's documentation system for accessing and searching Cray books, man pages,
and glossary terms from a web browser.

deferred implementation

The label used to introduce information about a feature that will not be implemented
until alater release.

299

Cray Fortran Reference Manual

300

login node

The service node that provides a user interface and services for compiling and
running applications.

module
See blade.

module file

A metdfile that defines information specific to an application or collection of
applications. (Thisterm is not related to the module statement of the Fortran
language; it is related to setting up the Cray system environment.) For example,

to define the paths, command names, and other environment variables to use the
Programming Environment for Cray X1 series systems, use the module file Pr gEnv,
which contains the base information needed for application compilations. Similarly,
to define the paths, command names, and other environment variables to use the
Programming Environment for Cray X2 systems, use the module file Pr gEnv- x2.
The module file npt sets a number of environment variables needed for message
passing and data passing application development.

Modules

A package on a Cray system that enables you to modify the user environment
dynamically by using modulefiles. (Thisterm is not related to the module statement
of the Fortran language; it isrelated to setting up the Cray system environment.) The
user interface to this package is the nrodul e command, which provides a number of
capabilities to the user including loading a module file, unloading a module file,
listing which module files are loaded, determining which module files are available
for use, and others. For example, the nrodul e command can be used to load a
specific compiler and its associated libraries, or even a particular version of a specific
compiler.

node

For Cray Linux Environment (CLE) systems, the logical group of processor(s),
memory, and network components acting as a network end point on the system
interconnection network. See also processing element.

parallel processing
Processing in which multiple processors work on a single application simultaneously.

processing element
The smallest physical compute group. There are two types of processing elements: a

S-3901-71

Glossary

S-3901-71

compute processing element consists of an AMD Opteron processor, memory, and
alink to a Cray SeaStar chip. A service processing element consists of an AMD
Opteron processor, memory, alink to a Cray SeaStar chip, and PCI-X or PCle links.

service node

A node that performs support functions for applications and system services. Service
nodes run SUSE LINUX and perform specialized functions. There are six types of
predefined service nodes: login, 1O, network, boot, database, and syslog.

specialization

The process of setting files on the shared-root file system so that unique files can
exist for anode or for aclass of nodes.

TotalView

A symbolic source-level debugger designed for debugging the multiple processes
of parallel Fortran, C, or C++ programs.

301

	Cray Fortran Reference Manual
	New Features
	Introduction [1]
	1.1 The Cray Fortran Programming Environment
	1.2 Cray Fortran Compiler Messages
	1.3 Document-specific Conventions
	1.4 Fortran Standard Compatibility
	1.4.1 Fortran 95 Compatibility
	1.4.2 Fortran 90 Compatibility

	1.5 Related Fortran Publications

	Invoking the Cray Fortran Compiler [2]
	2.1 -A module_name [, module_name] ...
	2.2 -b bin_obj_file
	2.3 -c
	2.4 -d disable and -e enable
	2.5 -D identifier [=value]
	2.6 -f source_form
	2.7 -F
	2.8 -g
	2.9 -G debug_lvl
	2.10 -h arg
	2.10.1 -h [no]autothread
	2.10.2 -h cachen
	2.10.3 -h [no]caf
	2.10.4 -h cpu=target_system
	2.10.5 -h display_opt
	2.10.6 -h [no]dwarf
	2.10.7 -h func_trace
	2.10.8 -h keepfiles
	2.10.9 -h [no]msgs
	2.10.10 -h [no]negmsgs
	2.10.11 -h network=nic
	2.10.12 -h [no]omp
	2.10.13 -h [no]omp_trace
	2.10.14 -h page_align_allocate
	2.10.15 -h profile_generate
	2.10.16 -h [no]second_underscore
	2.10.17 -h threadn

	2.11 -I incldir
	2.12 -J dir_name
	2.13 -l libname
	2.14 -L ldir
	2.15 -m msg_lvl
	2.16 -M msgs
	2.17 -N col
	2.18 -O opt [,opt] ...
	2.18.1 -O n
	2.18.2 -O [no]aggress
	2.18.3 -O cachen
	2.18.4 -O fpn
	2.18.5 -O fusionn
	2.18.6 -O inlinelib
	2.18.7 -O ipan and -O ipafrom=source[:source] ...
	2.18.7.1 Automatic Inlining
	2.18.7.2 Explicit Inlining
	2.18.7.3 Combined Inlining

	2.18.8 -O [no]modinline
	2.18.9 -O [no]msgs
	2.18.10 -O [no]negmsgs
	2.18.11 -O nointerchange
	2.18.12 -O [no]omp
	2.18.13 -O [no]overindex
	2.18.14 -O [no]pattern
	2.18.15 -O scalarn
	2.18.16 -O shortcircuitn
	2.18.17 -O threadn
	2.18.18 -O unrolln
	2.18.19 -O vectorn
	2.18.20 -O [no]zeroinc

	2.19 -o out_file
	2.20 -p module_site[,module_site]
	2.21 -Q path
	2.22 -r list_opt
	2.23 -R runchk
	2.24 -s size
	2.24.1 Different Default Data Size Options on the Command Line
	2.24.2 Pointer Scaling Factor

	2.25 -S asm_file
	2.26 -T
	2.27 -U identifier [,identifier] ...
	2.28 -v
	2.29 -V
	2.30 -Wa"assembler_opt"
	2.31 -Wr"lister_opt"
	2.32 -x dirlist
	2.33 -X npes
	2.34 -Yphase,dirname
	2.35 --
	2.36 sourcefile[sourcefile.suffix ...]

	Setting Environment Variables [3]
	3.1 Compiler and Library Environment Variables
	3.1.1 CRAY_FTN_OPTIONS Environment Variable
	3.1.2 CRAY_PE_TARGET Environment Variable
	3.1.3 FORMAT_TYPE_CHECKING Environment Variable
	3.1.4 FORTRAN_MODULE_PATH Environment Variable
	3.1.5 LISTIO_PRECISION Environment Variable
	3.1.6 NLSPATH Environment Variable
	3.1.7 NPROC Environment Variable
	3.1.8 TMPDIR Environment Variable
	3.1.9 ZERO_WIDTH_PRECISION Environment Variable

	3.2 OpenMP Environment Variables
	3.3 Run Time Environment Variables
	3.3.1 aprun Resource Limits

	Using Cray Fortran Directives [4]
	4.1 Using Directives
	4.1.1 Directive Lines
	4.1.2 Range and Placement of Directives
	4.1.3 Interaction of Directives with the -x Command Line Option
	4.1.4 Command Line Options and Directives

	4.2 Vectorization Directives
	4.2.1 Copy Arrays to Temporary Storage: COPY_ASSUMED_SHAPE
	4.2.2 Limit Optimizations: HAND_TUNED
	4.2.3 Ignore Vector Dependencies: IVDEP
	4.2.4 Specify Scalar Processing: NEXTSCALAR
	4.2.5 Request Pattern Matching: [NO]PATTERN
	4.2.6 Declare an Array with No Repeated Values: PERMUTATION
	4.2.7 Designate Loop Nest for Vectorization: PREFERVECTOR
	4.2.8 Conditional Density: PROBABILITY
	4.2.9 Allow Speculative Execution of Memory References within Loo
	4.2.10 Allow Speculative Execution of Memory References and Arith
	4.2.11 Designate Loops with Low Trip Counts: SHORTLOOP, SHORTLOOP
	4.2.12 Provide More Information for Loops: LOOP_INFO
	4.2.13 Autothreading for Loops: LOOP_INFO PREFER_[NO]THREAD
	4.2.14 Unroll Loops: [NO]UNROLL
	4.2.15 Enable and Disable Vectorization: [NO]VECTOR
	4.2.16 Enable or Disable, Temporarily, Soft Vector-pipelining: [N

	4.3 Inlining Directives
	4.3.1 Disable or Enable Cloning for a Block of Code: [NO]CLONE an
	4.3.2 Disable or Enable Inlining for a Block of Code: [NO]INLINE
	4.3.3 Specify Inlining for a Procedure: INLINEALWAYS and INLINENE
	4.3.4 Create Inlinable Templates for Module Procedures: [NO]MODIN

	4.4 Scalar Optimization Directives
	4.4.1 Control Loop Interchange: [NO]INTERCHANGE
	4.4.2 Control Loop Collapse: [NO]COLLAPSE
	4.4.3 Determine Register Storage: NOSIDEEFFECTS
	4.4.4 Suppress Scalar Optimization: SUPPRESS

	4.5 Local Use of Compiler Features
	4.5.1 Check Array Bounds: [NO]BOUNDS
	4.5.2 Specify Source Form: FREE and FIXED

	4.6 Storage Directives
	4.6.1 Permit Cache Blocking: BLOCKABLE Directive
	4.6.2 Declare Cache Blocking: BLOCKINGSIZE and NOBLOCKING Directi
	4.6.3 Request Stack Storage: STACK

	4.7 Miscellaneous Directives
	4.7.1 Control Autothreading: [NO]AUTOTHREAD
	4.7.2 Allocate Cache: CACHE
	4.7.3 Non-temporal Reads and Writes: CACHE_NT
	4.7.4 Specify Array Dependencies: CONCURRENT
	4.7.5 Fuse Loops: [NO]FUSION
	4.7.6 Create Identification String: ID
	4.7.7 Disregard Dummy Argument Type, Kind, and Rank: IGNORE_TKR
	4.7.8 External Name Mapping: NAME
	4.7.9 Preprocess Include File: PREPROCESS
	4.7.10 Specify Weak Procedure Reference: WEAK

	Source Preprocessing [5]
	5.1 General Rules
	5.2 Directives
	5.2.1 #include Directive
	5.2.2 #define Directive
	5.2.3 #undef Directive
	5.2.4 # (Null) Directive
	5.2.5 Conditional Directives
	5.2.5.1 #if Directive
	5.2.5.2 #ifdef Directive
	5.2.5.3 #ifndef Directive
	5.2.5.4 #elif Directive
	5.2.5.5 #else Directive
	5.2.5.6 #endif Directive

	5.3 Predefined Macros
	5.4 Command Line Options

	Using the OpenMP Fortran API [6]
	6.1 Limitations
	6.2 Differences
	6.3 Optimizations
	6.4 Compiler Options
	6.5 aprun Options

	Cray Fortran Defined Externals [7]
	7.1 Conformance Checks

	Cray Fortran Language Extensions [8]
	8.1 Characters, Lexical Tokens, and Source Form
	8.1.1 Characters Allowed in Names
	8.1.2 Switching Source Forms
	8.1.3 Continuation Line Limit
	8.1.4 D Lines in Fixed Source Form

	8.2 Types
	8.2.1 Alternate Form of LOGICAL Constants
	8.2.2 Cray Pointer Type
	8.2.3 Cray Character Pointer Type
	8.2.4 Boolean Type
	8.2.5 Alternate Form of ENUM Statement
	8.2.6 TYPEALIAS Statement

	8.3 Data Object Declarations and Specifications
	8.3.1 Attribute Specification Statements
	8.3.1.1 BOZ Constants in DATA Statements
	8.3.1.2 Attribute Respecification
	8.3.1.3 AUTOMATIC Attribute and Statement

	8.3.2 IMPLICIT Statement
	8.3.2.1 IMPLICIT Extensions

	8.3.3 Storage Association of Data Objects
	8.3.3.1 EQUIVALENCE Statement Extensions
	8.3.3.2 COMMON Statement Extensions

	8.4 Expressions and Assignment
	8.4.1 Expressions
	8.4.1.1 Rules for Forming Expressions
	8.4.1.2 Intrinsic and Defined Operations
	8.4.1.3 Intrinsic Operations
	8.4.1.4 Bitwise Logical Expressions

	8.4.2 Assignment

	8.5 Execution Control
	8.5.1 STOP Code Extension

	8.6 Input/Output Statements
	8.6.1 File Connection
	8.6.1.1 OPEN Statement

	8.7 Error, End-of-record, and End-of-file Conditions
	8.7.1 End-of-file Condition and the END-specifier
	8.7.1.1 Multiple End-of-file Records

	8.8 Input/Output Editing
	8.8.1 Data Edit Descriptors
	8.8.1.1 Integer Editing
	8.8.1.2 Real Editing
	8.8.1.3 Logical Editing
	8.8.1.4 Character Editing

	8.8.2 Control Edit Descriptors
	8.8.2.1 Q Editing

	8.8.3 List-directed Formatting
	8.8.3.1 List-directed Input

	8.8.4 Namelist Formatting
	8.8.4.1 Namelist Extensions

	8.8.5 I/O Editing

	8.9 Program Units
	8.9.1 Main Program
	8.9.1.1 Program Statement Extension

	8.9.2 Block Data Program Units
	8.9.2.1 Block Data Program Unit Extension

	8.10 Procedures
	8.10.1 Procedure Interface
	8.10.1.1 Interface Duplication

	8.10.2 Procedure Definition
	8.10.2.1 Recursive Function Extension
	8.10.2.2 Empty CONTAINS Sections

	8.11 Intrinsic Procedures and Modules
	8.11.1 Standard Generic Intrinsic Procedures
	8.11.1.1 Intrinsic Procedures

	8.12 Exceptions and IEEE Arithmetic
	8.12.1 The Exceptions
	8.12.1.1 IEEE Intrinsic Module Extensions

	8.13 Interoperability with C
	8.13.1 Interoperability Between Fortran and C Entities
	8.13.1.1 BIND(C) Syntax

	8.14 Coarrays
	8.15 Compiling and Executing Programs Containing Coarrays
	8.15.1 ftn and aprun Options Affecting Coarrays
	8.15.2 Using the CrayTools Tool Set with Coarray Programs
	8.15.2.1 Debugging Programs Containing Coarrays (Deferred impleme
	8.15.2.2 Analyzing Coarray Program Performance

	8.15.3 Interoperating with Other Message Passing and Data Passing
	8.15.4 Optimizing Programs with Coarrays

	8.16 Submodules

	Obsolete Features [9]
	9.1 IMPLICIT UNDEFINED
	9.2 Type Statement with *n
	9.3 BYTE Data Type
	9.4 DOUBLE COMPLEX Statement
	9.5 STATIC Attribute and Statement
	9.6 Slash Data Initialization
	9.7 DATA Statement Features
	9.8 Hollerith Data
	9.8.1 Hollerith Constants
	9.8.2 Hollerith Values
	9.8.3 Hollerith Relational Expressions

	9.9 PAUSE Statement
	9.10 ASSIGN, Assigned GO TO Statements, and Assigned Format Speci
	9.10.1 Form of the ASSIGN and Assigned GO TO Statements
	9.10.2 Assigned Format Specifiers

	9.11 Two-branch IF Statements
	9.11.1 Two-branch Arithmetic IF
	9.11.2 Indirect Logical IF

	9.12 Real and Double Precision DO Variables
	9.13 Nested Loop Termination
	9.14 Branching into a Block
	9.15 ENCODE and DECODE Statements
	9.15.1 ENCODE Statement
	9.15.2 DECODE Statement

	9.16 BUFFER IN and BUFFER OUT Statements
	9.17 Asterisk Delimiters
	9.18 Negative-valued X Descriptor
	9.19 A and R Descriptors for Noncharacter Types
	9.20 H Edit Descriptor
	9.21 Obsolete Intrinsic Procedures

	Cray Fortran Deferred Implementation and Optional Features [10]
	10.1 ISO_10646 Character Set
	10.2 Restrictions on Unlimited Polymorphic Variables
	10.3 ENCODING= in I/O Statements
	10.4 Allocatable Assignment (Optionally Enabled)

	Cray Fortran Implementation Specifics [11]
	11.1 Companion Processor
	11.2 INCLUDE Line
	11.3 INTEGER Kinds and Values
	11.4 REAL Kinds and Values
	11.5 DOUBLE PRECISION Kinds and Values
	11.6 LOGICAL Kinds and Values
	11.7 CHARACTER Kinds and Values
	11.8 Cray Pointers
	11.9 ENUM Kind
	11.10 Storage Issues
	11.10.1 Storage Units and Sequences
	11.10.2 Static and Stack Storage
	11.10.3 Dynamic Memory Allocation

	11.11 Finalization
	11.12 ALLOCATE Error Status
	11.13 DEALLOCATE Error Status
	11.14 ALLOCATABLE Module Variable Status
	11.15 Kind of a Logical Expression
	11.16 STOP Code Availability
	11.17 Stream File Record Structure and Position
	11.18 File Unit Numbers
	11.19 OPEN Specifiers
	11.20 FLUSH Statement
	11.21 Asynchronous I/O
	11.22 REAL I/O of an IEEE NaN
	11.22.1 Input of an IEEE NaN
	11.22.2 Output of an IEEE NaN

	11.23 List-directed and NAMELIST Output Default Formats
	11.24 Random Number Generator
	11.25 Timing Intrinsics
	11.26 IEEE Intrinsic Modules

	Enhanced I/O: Using the Assign Environment [12]
	12.1 Understanding the assign Environment
	12.1.1 Assign Objects and Open Processing
	12.1.2 assign Command Syntax
	12.1.3 Using the Library Routines

	12.2 Tuning File Connection Behavior
	12.2.1 Using Alternative File Names
	12.2.2 Specifying File Structure
	12.2.2.1 Unblocked File Structure
	12.2.2.2 assign -s sbin File Processing
	12.2.2.3 assign -s bin File Processing
	12.2.2.4 assign -s u File Processing
	12.2.2.5 text File Structure
	12.2.2.6 cos or blocked File Structure

	12.2.3 Specifying Buffer Behavior
	12.2.3.1 Default Buffer Sizes
	12.2.3.2 Library Buffering
	12.2.3.3 System Cache
	12.2.3.4 Unbuffered I/O

	12.2.4 Specifying Foreign File Formats
	12.2.5 Specifying Memory Resident Files
	12.2.6 Using and Suppressing File Truncation

	12.3 Defining the Assign Environment File
	12.4 Using Local Assign Mode

	Using Flexible File I/O (FFIO) [13]
	13.1 Understanding FFIO
	13.2 Using FFIO Layers
	13.2.1 Available I/O Layers
	13.2.2 Specifying Layered I/O Options

	13.3 Using FFIO with Common File Structures
	13.3.1 Reading and Writing Text Files
	13.3.2 Reading and Writing Unblocked Files
	13.3.3 Reading and Writing Fixed-length Records
	13.3.4 Reading and Writing Blocked Files

	13.4 Tips for Enhancing I/O Performance
	13.4.1 Buffer Size Considerations
	13.4.2 Removing Blocking
	13.4.2.1 The syscall Layer
	13.4.2.2 The bufa and cachea Layers
	13.4.2.3 The mr Layer
	13.4.2.4 The global Layer (Deferred Implementation)
	13.4.2.5 The cache Layer

	13.5 Sample Programs

	FFIO Layer Reference [14]
	14.1 Characteristics of Layers
	14.2 The bufa Layer
	14.3 The cache Layer
	14.4 The cachea Layer
	14.5 The cos Blocked Layer
	14.6 The event Layer
	14.7 The f77 Layer
	14.8 The fd Layer
	14.9 The global Layer (Deferred Implementation)
	14.10 The ibm Layer
	14.11 The mr Layer
	14.12 The null Layer
	14.13 The syscall Layer
	14.14 The system Layer
	14.15 The text Layer
	14.16 The user and site Layers
	14.17 The vms Layer

	Creating a user Layer [15]
	15.1 Internal Functions
	15.1.1 The Operations Structure
	15.1.2 FFIO and the stat Structure

	15.2 user Layer Example

	Named Pipe Support [16]
	16.1 Piped I/O Example without End-of-file Detection
	16.2 Detecting End-of-file on a Named Pipe
	16.3 Piped I/O Example with End-of-file Detection

	Glossary
	List of Figures
	Figure 1. Optimization Values
	Figure 2. Memory Use
	Figure 3. Access Methods and Default Buffer Sizes
	Figure 4. Typical Data Flow

	List of Examples
	Example 1. Unrolling outer loops
	Example 2. Illegal unrolling of outer loops
	Example 3. Unrolling nearest neighbor pattern
	Example 4. Local assign mode
	Example 5. Unformatted direct mr with unblocked file
	Example 6. Unformatted sequential mr with blocked file
	Example 7. No EOF Detection: program writerd
	Example 8. No EOF Detection: program readwt
	Example 9. EOF Detection: program writerd
	Example 10. EOF Detection: program readwt

	List of Tables
	Table 1. Compiling Options
	Table 2. Floating-point Optimization Levels
	Table 3. Automatic Inlining Specifications
	Table 4. File Types
	Table 5. Scaling Factor in Pointer Arithmetic
	Table 6. -Yphase Definitions
	Table 7. Directives
	Table 8. Explanation of Ignored TKRs
	Table 9. Operand Types and Results for Intrinsic Operations
	Table 10. Cray Fortran Intrinsic Bitwise Operators and the Allow
	Table 11. Data Types in Bitwise Logical Operations
	Table 12. Values for Keyword Specifier Variables in an OPEN Stat
	Table 13. Default Fractional and Exponent Digits
	Table 14. Summary of Control Edit Descriptors
	Table 15. Summary of Data Edit Descriptors
	Table 16. Default Compatibility Between I/O List Data Types and
	Table 17. RELAXED Compatibility Between Data Types and Data Edit
	Table 18. STRICT77 Compatibility Between Data Types and Data Edi
	Table 19. STRICT90 and STRICT95 Compatibility Between Data Types
	Table 20. Cray Fortran IEEE Intrinsic Module Extensions
	Table 21. Obsolete Features and Preferred Alternatives
	Table 22. Summary of String Edit Descriptors
	Table 23. Obsolete Procedures and Alternatives
	Table 24. Assign Object Open Processing
	Table 25. Fortran Access Methods and Options
	Table 26. Default Buffer Sizes for Fortran I/O Library Routines
	Table 27. FFIO Layers
	Table 28. Data Manipulation: bufa Layer
	Table 29. Supported Operations: bufa Layer
	Table 30. Data Manipulation: cache Layer
	Table 31. Supported Operations: cache Layer
	Table 32. Data Manipulation: cachea Layer
	Table 33. Supported Operations: cachea Layer
	Table 34. Data Manipulation: cos Layer
	Table 35. Supported Operations: cos Layer
	Table 36. Data Manipulation: f77 Layer
	Table 37. Supported Operations: f77 Layer
	Table 38. Data Manipulation: global Layer
	Table 39. Supported Operations: global Layer
	Table 40. Values for Maximum Record Size on ibm Layer
	Table 41. Values for Maximum Block Size in ibm Layer
	Table 42. Data Manipulation: ibm Layer
	Table 43. Supported Operations: ibm Layer
	Table 44. Data Manipulation: mr Layer
	Table 45. Supported Operations: mr Layer
	Table 46. Data Manipulation: syscall Layer
	Table 47. Supported Operations: syscall Layer
	Table 48. Data Manipulation: text Layer
	Table 49. Supported Operations: text Layer
	Table 50. Values for Record Size: vms Layer
	Table 51. Values for Maximum Block Size: vms Layer
	Table 52. Data Manipulation: vms Layer
	Table 53. Supported Operations: vms Layer
	Table 54. C Program Entry Points

